名古屋大学 教育研究用高性能コンピュータシステム 利用者マニュアル (FX100,CX400)

2019年6月14日

本マニュアルは、名古屋大学情報基盤センター スーパーコンピュータシステムの利用手引です。

新スーパーコンピュータでは、利用方法が大きく変わっています。 別冊「FX10システムからFX100システムへの変更点について」に変更点等があります。 ご参考お願いいたします。なお、ご不明な点やご質問がございましたら、次の連絡先にお問い合わせください。

【問い合わせ先】 名古屋大学 情報連携統括本部情報推進部 情報基盤課共同利用担当(情報基盤センター)

メール: <u>kyodo@itc.nagoya-u.ac.jp</u>

よくあるご質問:

Q1: HPCPortal (<u>https://portal.cc.nagoya-u.ac.jp/</u>) にて公開鍵を登録しようとすると、以下のメッセージが出 て登録できない。

- A1: HPCPortal での公開鍵の登録は、一度のみ(一度に複数登録は可能)となっています。 すでに登録されていると再登録はできません。公開鍵登録済みの端末(a)で SSH にて、ログインノード (cx.cc.nagoya-u.ac.jp)にログインできる場合、以下の方法で追加登録できます。
 - 1:公開鍵登録済みの端末(a)でSSHにて、ログインノード(cx.cc.nagoya-u.ac.jp)にログインします。
 - 2:ホームディレクトリ /.ssh 配下の、ファイル名 authorized_keys に、追加したい端末(b)の公開 鍵を追加します。
 - ー>vi エディタなどで追加します。
 - 3:公開鍵登録済みの端末(a)はそのままで、公開鍵を追加した端末(b)でログインします。
- Q2:2015年7月までfxのログインノードにsshできていたが、2015年9月以降、できなくなった。
- A2: fx のログインノードの OS がバージョンアップされました。

fx のログインノードの OS がバージョンアップされた為、お手元の LINUX 等のクライアント端末から、 fx のログインノードに ssh しようとすると、次のメッセージが表示されログインができなくなる場合があ ります。

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

この時お使いの端末の .ssh ディレクトリ配下にある known_hosts ファイルから fx.cc.nagoya-u.ac.jp に 関する行を削除して再度ログインを行って下さい。

次のコマンドでも削除できます。

コマンド:<u>ssh-keygen -R fx.cc.nagoya-u.ac.jp</u>

この操作を行っても接続ができない場合は次のコマンドを実行し再度ログインして下さい。

コマンド:<u>ssh-add ~/.ssh/id_rsa</u>

Q3: fx や cx のログインノードでコンパイル時に通常と比べて処理が遅い、応答が返ってこない。

A3: ログインノードのメモリ不足が原因です。対応策として資源の追加がありますが、すぐにはできないため、 回避策をご案内します。

※ログインノードは計算ノードと違い、他者との「資源の共有」が発生します。その為、他のログインノ ードにログインのし直しをすることにより、回避できる可能性があります。

ログインノードは複数あり、メンテナンス等により入れ替わります。現在稼働中のログインノードの IP アドレスはログインノードにログイン頂き、以下の例のように、nslookup コマンドで ip アドレスを 確認します。

[user@fx01 ~]\$ nslookup <一入力

> fx.cc.nagoya-u.ac.jp

Server: 133.6.*.*

Address: 133.6.*.*#53

Name: fx.cc.nagoya-u.ac.jp <-1台目 Address: 133.6.?.?1 Name: fx.cc.nagoya-u.ac.jp <-2台目 Address: 133.6.?.?2 Name: fx.cc.nagoya-u.ac.jp <-3台目 Address: 133.6.?.?3 Name: fx.cc.nagoya-u.ac.jp <-4台目 Address: 133.6.?.?4 Name: fx.cc.nagoya-u.ac.jp <-5台目 Address: 133.6.?.?5 Name: fx.cc.nagoya-u.ac.jp <-6台目 Address: 133.6.?.?6 <一入力 > exit [user@fx01 ~]\$ 確認した ip アドレスをひとつ指定して ssh で、ログインします。

はじめに	1
1. 教育研究用高性能コンピュータシステムの概要	2
1.1 システム構成	2
1.2 ハードウェア概要(FX100)	3
1.3 ハードウェア概要(CX)	5
1.4 ソフトウェア構成	5
1.5 アカウントと認証方式	6
1.6 ネットワークアクセス	7
1.7 システムへのログイン(Windows 環境)	7
1.8 システムへのログイン(UNIX 環境)	. 10
1.9 ログイン環境	. 10
2. システム環境	. 12
2.1 FEFS (Fujitsu Exabyte File System)の概要	. 12
2.2 利用ファイルシステム	. 12
2.3 コンパイラの種類	. 13
2.4 コンパイル/リンクの概要	. 13
2.5 Fortran	. 14
2.6 C/C++	. 20
2.7 XPFortran	. 29
2.8 数値計算ライブラリ	. 29
2.9 実行時環境変数	. 32
2.10 エンディアン変換	. 33
2.11 2GBを超えるファイル出力時の留意点	. 34
3. ジョブ実行	. 34
3.1 ジョブシステム概要	. 34
3.2 ジョブ実行リソース	. 35
3.3 ジョブ投入オプション	. 37
3.4 バッチジョブ投入(pjsub コマンド)	. 41
3.5 ジョブ状態表示(pjstat コマンド)	. 53
3.6 ジョブキャンセル(pjdel コマンド)	. 61
3.7 ジョブ保留(pjhold コマンド)	. 61
3.8 ジョブ開放(pjrls コマンド)	. 61
4. MPI 実行	. 62
4.1 MPI プログラム実行	. 62
4.2 MPI ジョブ投入時の指定	. 64

目次

5. プログラミング支援ツール	77
5.1 プログラミング支援ツールインストール	78
5.2 ツール起動方法	79
5.3 ツール終了	79
5.4 デバッガの利用	
6. チューニング	85
6.1 チューニング概要	
6.2 プロファイラ	
7. ファイル転送	
7.1 システムへのファイル転送(Windows 環境)	
7.2 システムへのファイル転送(Linux 環境)	
8. vSMP	100
8.1 vSMP の利用方法	100
9. Intel コンパイラ・Xeon Phi 利用について	110
9.1 Intel コンパイラ	110
9.2 Phi の利用について	
10. HPC ポータル	128
10.1 HPC ポータル機能	
11. マニュアル	

はじめに

本利用者マニュアルは、国立大学法人名古屋大学に導入の教育研究用高性能コンピュータシステム 利用方法について説明した資料です。システムを利用する方は、必ずお読みください。 本利用者マニュアルの内容は、不定期に更新いたします。

本利用者マニュアルに記載しているシェルスクリプトやサンプルプログラムなどは、教育研究用高 性能コンピュータシステム ログインノードの以下のディレクトリに格納されていますので、併せて ご利用ください。

/center/local/sample 配下

【サンプルの一覧を表示する方法】

[USERID@cx03 ~]\$ sample

OpenFOAM	adf	fftw	gaussian	intel	lsdyna	pyn
_hdf5.20140618	amber	fx_script	gromacs	lammps	namd	starccm+
abaqus	cx_script	gamess	hdf5	lang_sample	ohi_offload	l vnode
[USEERID@cx03 ~	·]\$					

【サンプルのダウンロード例】

amber の内容をディレクトリ「new」を作成してダウンロード

[USERID@cx03~]\$ sample amber new

本書の一部、または全部を無断で複製、転載、再配布することを禁じます。

1. 教育研究用高性能コンピュータシステムの概要

1.1 システム構成

教育研究用高性能コンピュータシステムは、FX100 用計算ノード群、CX 用計算ノード群、FX100 用ログインノード、CX 用ログインノード、ストレージシステム、管理ノード群から構成されるシス テムです。

1

■ システム名称:教育研究用高性能コンピュータシステム(フェーズⅡ)

図 1-1 システム構成図

FX100 用計算ノード群は、富士通 PRIMEHPC FX100 14 ラックで構成され、総理論演算性能 2918TFLOPS、総主記憶容量 92.16TByte を有します。Tofu インターコネクト 2*1は SPARC64™ Xifx に統合され、ノード間通信バンド幅を低遅延でリンクあたり 12.5GB/s と高速化しています。

ストレージ環境は、共有ファイルシステム(FEFS)から構成されます。

CX 用計算ノード群は、富士通 PRIMERGY CX2550M1 及び PRIMERGY CX270 S2 で構成され、 総理論演算性能 727.1TFLOPS、総主記憶容量 77.6TByte を有しています。

ストレージ環境は、FX100と同様、共有ファイルシステム(FEFS)から構成されます。

^{*1} Tofu (Torus fusion) は、富士通の高速インターコネクトの呼称です。

共有ファイルシステムは、/home、/center、/large、/large2 から構成されており、各ユーザーのホ ームディレクトリやデータを格納するファイルシステムであり、全計算ノードおよびログインノード から参照可能です。利用可能容量は合計約 6PByte です。

システムへのアクセスは、sshによるアクセスとHTTPS アクセス(プログラミング支援ツール)が可能です。ユーザーはログインノード上にて、プログラムの編集、コンパイル・リンクによる実行モジュールの作成、バッチジョブの操作、ジョブ実行結果の検証、デバッグ等の作業を行うことが可能です。

1.2 ハードウェア概要(FX100)

計算ノードを構成する富士通 PRIMEHPC FX100 は、HPC 分野に特化した、以下の特徴を持った 計算システムであり、様々なテクニカル分野での利用が可能です。

1.2.1 SPARC64[™] XIfx

SPARC64[™]XIfx は 2 つのコアメモリグループ(CMG)、Tofu2 コントローラ、PCI-Express コントロー ラなどから構成されています。1 つの CMG は 16 個のコア、1 個のアシスタントコア、17 コア間で共 有される 12MB のレベル 2 キャッシュ、メモリコントローラーで構成され、2 つの CMG 間ではキャ ッシュー貫性が保たれます。半導体には 20nm テクノロジーを採用しています。各コアは IU (Instruction control Unit)、EU (Execution Unit)、SU (Storage Unit) の 3 つのユニットにわかれます。 IU は命令のフェッチ、発行および完了を制御します。EU は 2 つの整数演算ユニット、2 つの整数演算 兼アドレス計算ユニット、および 8 つの浮動小数点積和演算ユニット(FMA: Floating-point Multiply and Add)から構成され、整数演算、および浮動小数点演算命令を実行します。1 つの FMA は 1 サイクルあ た 2 つの倍精度浮動小数点演算(加算と乗算)を実行可能です。各コアは 1 サイクルあたり 2 つの SIMD 演算命令を実行します。したがって各コアで 1 サイクルあたり 16 個、32 個の計算コア合計で 512 個 の倍精度浮動小数点演算が実行可能となります。また、単精度浮動小数点の場合は 1 サイクルあたり 2 倍の演算が可能です。SU はロード・ストア命令を実行します。各コアは 64KB のレベル 1(L1)命令キ ャッシュとデータキャッシュをそれぞれ内蔵しています。

コア数	32 + 2 アシスタントコア
コアあたりスレッド数	1
L2 キャッシュ容量	24MiB
ピーク性能	> 1 Tflops
メモリ理論帯域	240GB/s x2(in/out)
インターコネクト理論帯域	125GB/s x2(in/out)
プロセステクノロジー	20nm CMOS
トランジスタ数	約 37 億 5000 万個

表 1-1 SPARC64[™]XIfx 諸元

1.2.2 Tofu インターコネクト 2

● インターコネクト・コントローラーICC

PRIMEHPC FX100 では前世代の Tofu インターコネクト(Tofu1)をベースに性能、機能を向上させた Tofu インターコネクト 2 を開発し、SPARC64[™]XIfx プロセッサに統合しました。ノード間通信バンド 幅を低遅延でリンクあたり 12.5 GB/s と高速化しています。

ICC は PCI Express ルート・コンプレックスと Tofu インターコネクトを統合した LSI です。

● RDMA 通信

Tofu2のRDMA通信機能は、Tofu1のPutおよびGetに加えてAtomic RMW(Atomic ReadModify Write) をサポートします。Tofu2のAtomic RMWは、CPUのAtomic 演算に対し、相互にAtomictyを保障し ます。これによりプロセス並列とスレッド並列で資源を共有する処理において、排他制御オーバヘッ ドを削減します。

通信インターフェース

Tofu1 は送信時の遅延削減のため、通信コマンドを CPU レジスタから直接 RDMA エンジンに送る、 ダイレクトディスクリプタ機能を備えていました。Tofu2 ではさらに、受信時の遅延を削減するため、 受信データを L2 キャッシュメモリに直接書き込むキャッシュインジェクション機能を追加しました。

1.2.3 スケーラブル・高可用性3次元メッシュ/トーラス

6 次元メッシュ/トーラス・ネットワークでは、各次元の軸を X, Y, Z, A, B, C と呼び、X 軸・Y 軸は 筐体間を、Z 軸・B 軸はシステムボード間を、A 軸・C 軸はシステムボード上のノード間を接続します。 Z 軸は座標 0 に I/O ノード、座標 1 から 8 に計算ノードが配置されます。B 軸は、3 つのシステムボー ドをリング接続して冗長性を確保します。A 軸、B 軸、C 軸はそれぞれの長さが 2、3、2 の固定長で あり、A 軸はメッシュ、B 軸はトーラス、C 軸はメッシュで接続されます。

図 1-2 インターコネクトのトポロジーイメージ

Tofu インターコネクトは隣接通信を用いた通信パターンの最適化を容易にするため、ユーザーが指定する大きさの1次元/2次元/3次元トーラス空間をユーザービューとして提供します。ユーザー指定トーラス空間上の位置はランク番号で識別されます。3次元トーラスが指定された場合、システムは XYZ の1 軸と ABC の1 軸の組合せによる3 つの空間を形成します。そして、各空間で一筆書きの隣接関係を保証するようにランク番号を与えます。

1.3 ハードウェア概要(CX)

計算ノードを構成する富士通 PRIMERGY CX2550M1 及び PRIMERGY CX270 S2 は、HPC 分野 に特化した、以下の特徴を持った計算システムであり、様々なテクニカル分野での利用が可能です。

システムの OS が Red Hat Enterprise Linux であるため、ISV アプリケーションが豊富にサポート されています。

機種名	Fujitsu PRIMERGY	Fujitsu PRIMERGY
	CX400 S2/270 S2	CX400 M1/2550 M1
OS	Red Hat Enterprise Linux6.4	Red Hat Enterprise Linux6.5
プロセッサ	Intel IvyBridge(2.7GHz)	Intel Haswell(2.6GHz)
コア数	E5-2697V2	Intel Xeon E5-2600 v3
	12 J7	processor family 14 🛛 🏹
CPU/ /-ド	2	2
L3 キ ャッ シ ュ	30MB/CPU	35MB/CPU
メモリバンド幅	119GB/s	136GB/s
ノード当りの理論演算性	518.4GFLOPS (24 コア)	1164.8GFLOPS (28 ⊐7)
能(コア数)		
ノード当りのメモリ容量	128GiB	128GiB
総ノード数(総コア数)	184(4,416]7)	384(10,752 コア)
総演算性能	279.9TFLOPS	447.2TFLOPS
総メモリ容量	23TiB	48TiB
コプロセッサ	Xeon Phi3100 family(MIC)	

表 1-2 ハードウェア概要

1.4 ソフトウェア構成

システムのソフトウェア環境を以下に示します。

FX100 は、計算ノード群とログインノードは異なるアーキテクチャであるため、ログインノードでは計算ノード群向けのクロスコンパイラ環境が利用可能です。

CXは、計算ノード群とログインノードは同等のアーキテクチャであるため、オウンコンパイラ環境が利用可能です。

表 1-3 システムソフトウェア一覧[FX100]

75 (1)	計算ノーに	ロガインリード
	│	UV177-P

OS	専用 OS(FX100 向け OS) Red Hat Enterprise Linux		
コンパイラ	富士通製コンパイラ 富士通製コンパイラ(クロスコンパイラ)		
	Fortran コンパイラ	Fortran コンパイラ	
	C/C++ コンパイラ C/C++ コンパイラ		
	XPFortran コンパイラXPFortran コンパイラ		
ライブラリ	富士通ライブラリ		
	BLAS, LAPACK, ScaLAPACK, MPI, SSLII(Scientific Subroutine		
	Library II), C-SSL II, SSL II/MPI		
ジョブ管理システム	富士通 Technical Computing Su	ite	

表 1-4 システムソフトウェア一覧[CX]

項目	計算ノード ログインノード				
OS	Red Hat Enterprise Linux	Red Hat Enterprise Linux			
コンパイラ	富士通製コンパイラ 富士通製コンパイラ				
	Fortran コンパイラ Fortran コンパイラ				
	c/c++ コンパイラ	c/c++ コンパイラ			
	XPFortran コンパイラ	XPFortran コンパイラ			
	Intel コンパイラ Intel コンパイラ				
	Fortran コンパイラ	Fortran コンパイラ			
	c/c++ コンパイラ	c/c++ コンパイラ			
ライブラリ	富士通ライブラリ				
	BLAS, LAPACK, ScaLAPACK, MPI, SSLII(Scientific Subroutine				
	Library II), C-SSL II, SSL II/MPI				
	Intel ライブラリ				
	MKL				
ジョブ管理システム	富士通 Technical Computing Su	ite			

ログインノードは、SSH によるログイン後、コマンドの対話的実行が可能であり、主にプログラム の作成・編集、実行モジュールのコンパイル/リンク、ジョブ投入を行います。ログインノードの資源 は多くのユーザーで共有しますので重い処理は行わないようにしてください。ユーザーが行うジョブ 操作は、ジョブ管理システムを通じて、計算ノードで行います。

バッチジョブは、投入してから実行されるまでに待ち時間がありますが、自分の順番が回ってきた 際には計算ノードの資源を占有できます。

1.5 アカウントと認証方式

システムへのアクセスに使用するユーザー名は、申込み時に通知される利用者番号(ユーザー名)です。ログインノードへのアクセスはSSH(version2)をご利用ください。認証は公開鍵認証方式です。

1.6 ネットワークアクセス

ユーザーがシステムに対してアクセス可能なサーバは、ログインノードです。ログインノード (fx.cc.nagoya-u.ac.jp, cx.cc.nagoya-u.ac.jp)には、ssh にてアクセスします。

アクセス先は以下のとおりです。

ひ 「J / ノ ビ ハル 一見	表 1	-5 ア	ックセ!	ス先-	-覧
------------------	-----	------	------	-----	----

ホスト名(FQDN)	サービス	アクセス用途
fx.cc.nagoya-u.ac.jp	ssh https	 ・スーパーコンピューターシステム利用(仮想端末) ・プログラミング支援ツール
cx.cc.nagoya-u.ac.jp	ssh https	 ・スーパーコンピューターシステム利用(仮想端末) ・プログラミング支援ツール

1.7 システムへのログイン(Windows 環境)

Windows で使用できるターミナルソフトには PuTTY や Tera Term などがあります。PuTTY が もっとも鍵の扱いが容易なので、 PuTTY を推奨ターミナルソフトとし接続方法を説明します。

また、Cygwin を使用される方は UNIX 向けの解説をご覧ください。

PuTTY、TeraTerm は以下のサイトからダウンロードすることができます。

PuTTY: <u>http://www.chiark.greenend.org.uk/~sgtatham/putty/</u>

Tera Term: <u>http://sourceforge.jp/projects/ttssh2/</u>

1.7.1 鍵の作成

アクセス元端末(PC/WS)にて、秘密鍵/公開鍵ペアを作成します。

以下では PuTTY をインストールした際に付属する PuTTYGEN を用いた鍵の作成方法を示しま す。すでに鍵を作成済みの場合は、作業を行う必要はありません。

PuTTY Key Generator	×		
Eile Key Conversions Help			
Key No key.		- 1.	[Key]をクリック
		2.	表 示 され るメニュー 中 の
			「Generate key pair」をクリック
Actions			
Generate a public/private key pair	Generate		
Load an existing private key file	Load		
Save the generated key	Save p <u>u</u> blic key Save private key		
Parameters			
Type ofkey to generate: O SSH-1_(RSA) OSSH-2 RSA	SSH-2 DSA		

図 1-3 仮想端末(PuTTY)での秘密鍵指定画面 1

図 1-5 仮想端末(PuTTY)での秘密/公開鍵作成

1.7.2 公開鍵登録

公開鍵の登録は、HPC ポータル(https://portal.cc.nagoya-u.ac.jp/)を利用してください。 HPC ポータルでの公開鍵の登録は、一度のみ(一度に複数登録は可能)可能となっています。 (すでに登録されていると再登録はできません。ご注意ください。)

1.7.3 ログイン

1. 仮想端末を起動して、秘密鍵ファイルを指定します。

2. 仮想端末から FX100 スーパーコンピューターシステムにアクセスします。

- 3. 初めてログインするとき、警告メッセージが表示されます。[はい]をクリックします。 次回以降のログインでは、このメッセージは表示されません。
- 4. ユーザーアカウントと公開鍵作成時のパスフレーズを入力します。

ログアウトは、ターミナルソフト上で "exit" もしくは "logout" と入力します。

1.8 システムへのログイン(UNIX 環境)

1.8.1 鍵の作成

アクセス元端末(PC/WS)にて ssh-keygen コマンドを実行し、秘密鍵/公開鍵ペアを作成します。すでに鍵を作成済みの場合は、作業を行う必要はありません。

■ UNIX/Linux: 端末エミュレータを起動して、ssh-keygen コマンドを実行します。

図 1-6 公開鍵ペアの作成

1.8.2 ログイン

UNIX 系 PC、WS や Windows 環境で Cygwin を使ってシステムヘログインする場合は、ssh サービスを利用します。

1.9 ログイン環境

システムは、ログインシェルとして bash が登録されています。ログインシェルの変更はできません。

なお、ログイン時にシステムを利用するための環境設定が自動で設定されます。環境変数 PATH にパスを追加する際には、~/.bashrc.local を作成し PATH の最後に追加してください。PATH の先 頭に追加した場合、システムを正常に使用できなくなる恐れがあります。

1.9.1 メール転送設定

ジョブ終了時などメールにて通知を受けることができます。通知を受けるメールアドレスは、ユー ザー名@ジョブ投入ホスト名に設定されています。希望するメールアドレスで受信するためには、メ ール転送の設定(.forward)が必要です。メール転送の設定は、以下の通りです。

例) foo@foo.com に転送する場合

[username@fx01:~]\$ vi .forward

foo@foo.com

メールサーバ(nucc)はログインすることができませんので、ユーザー登録申請受付窓口へご連絡ください。

2. システム環境

2.1 FEFS (Fujitsu Exabyte File System)の概要

FEFS(Fujitsu Exabyte File System) は Lustre ファイルシステムをベースに開発したファイルシス テムで、数万規模のクライアントによるファイル利用を想定した大規模分散ファイルシステムです。 Lustre の優れた技術を受け継ぐと共に、Lustre との互換性を維持しつつ、大規模システム向けに最 大ファイルサイズ、最大ファイル数等の拡張を大規模システム向けに実施しています。

2.2 利用ファイルシステム

システムが提供するファイルシステム領域は以下のとおりです。

領域	領域名	実効容量	備考
	/home	約 0.5PB	ホーム領域
共有ファイルシステム ^{注1}	/center	約 1.0PB	ISV,OSS(ソフトウェア)領域
	/large	約 1.5PB	データ領域
	/large2	約 3.0PB	データ領域(2015.9.1 新規利用開始)

=	0 1	- f u maa	コムビー	1	11	수접 + 하	臣生
হহ	Z- I	小川川」	リモノ	, , , , , ,	\mathcal{V}	7月13-	一見

注1: ホーム領域は Quota にて使用量を各ユーザー500GB に制限されています。

注2: データ領域 /large と /large2 の作成方法は次のとおりです。

(1) /large の場合

コマンド:largedir (/large/利用者番号のディレクトリが作成されます。)

(2) /large2 の場合

コマンド:largedir2 (/large2/利用者番号のディレクトリが作成されます。)

2016.4.1 追記 /large と /large2 ともにディスク容量が不足しています。

/large は、10TB(10,000,000MB)以内

/large2 は、50TB(50,000,000MB)以内

でのご利用をお願いいたします。

各ノードからのファイルシステム領域利用状況は以下のとおりです。

表 2	-2 フ	アイル	システ	ム利用状況
-----	------	-----	-----	-------

領域	ログインノード	計算ノード
共有ファイルシステム	0	0

2.2.1 共有ファイルシステム

共有ファイルシステムは富士通製 FEFS で構成され、ユーザーのホーム領域やデータ領域として提供されます。ホーム領域の使用量は Quota にて 1 ユーザーあたり 500GB に制限されています。

共有ファイルシステムはログインノード、計算ノードから参照可能であり、主な使用目的は以下の とおりです。

• /home

- ホーム領域
- ソースプログラム/オブジェクトファイル/実行モジュールファイルの格納
- 小容量データの格納
- I/O 要求が少ないジョブ実行
- /center
 - ISV,OSS の格納
- /large、/large2
 - プログラム入出力データの格納
 - 大容量データの格納

2.3 コンパイラの種類

FX100 システムでは、ログインノードと計算ノードは異なるアーキテクチャです。そのため、ログ インノード上でプログラムの実行モジュールを作成するためにクロスコンパイラ環境が整備されてい ます。

CX2550 システムでは、ログインノードと計算ノードで異なるアーキテクチャですが、同じコンパ イラが利用可能です。ただし、計算ノードの性能を最大限利用するため、かつ、ログインノードでコ ンパイルする場合、「-KCORE_AVX2」の指定が必要(効果はプログラムに依存)です。

CX270 システムでは、ログインノードと計算ノードは同等のアーキテクチャであるため、同じコン パイラが利用できます。

		1
コンパイラ	ログインノード	計算ノード
クロスコンパイラ	0	×
オウンコンパイラ (ジョブ実行にて利用可)	×	0

表 2-3 コンパイラ環境[FX100]

表 2-4 コンパイラ環境[CX2550]

コンパイラ	ログインノード	計算ノード
オウンコンパイラ	O ^{%1}	0

※1 計算ノードの性能を最大限利用するには「-KCORE_AVX2」の指定が必要

表 2-5 コンパイラ環境[CX270]

コンパイラ	ログインノード	計算ノード
オウンコンパイラ	0	0

2.4 コンパイル/リンクの概要

コンパイル/リンクの書式とコマンド一覧は以下のとおりです。

コマンド [option] sourcefile [...]

	言語処理系	クロスコンパイラ ^{注1}	自動並列 注2	OpenMP ^{注 2}
ᆂᆇᆈ	Fortran90	frtpx		
	С	fccpx		
(9 F MP1)	C++	FCCpx		
가 되	Fortran90	mpifrtpx	-Kparallel	-Kopenmp
<u>业</u> タリ (MDT)	С	mpifccpx		
(MPI)	C++	mpiFCCpx		
並列	XPFortran	xpfrtpx		

表 2-6 コンパイル/リンクコマンド一覧(FX100)

注 1: クロスコンパイラはログインノード上で利用可能です。

注 2: 自動並列、OpenMP オプションはデフォルトでは無効です。

表 2-7 コンパイル/リンクコマンド一覧(CX)

	言語処理系	オウンコンパイラ ^{注1}	自動並列 注2	OpenMP ^{注 2}	AVX2 命令 ^{注3}
-le 24 도미	Fortran90	frt			
	С	fcc			
(JFMPI)	C++	FCC			
가 되	Fortran90	mpifrt	-Kparallel	-Kopenmp	-KCORE_AVX2
шуј (мрт)	С	mpifcc			
(ME 1)	C++	mpiFCC			
並列	XPFortran	xpfrt			

注 3: AVX2 命令はデフォルトでは無効です。

ログインノードでコンパイルし、CX2550 に対してジョブ投入する場合計算ノードの性能を最大限利用するには指定が必要です。

ただし、-KCORE_AVX2を指定する場合、他のオプションよりも後ろで指定して ください。他のオプションよりも前に指定した場合、-KCORE_AVX2が無効になる ことがあります。

2.5 Fortran

Fortran コンパイラの利用方法を示します。

Fortran コンパイラは、以下の規格に準拠しています。

JIS X 3001-1:2009 プログラム言語 Fortran

ISO/IEC 1539-1:2004 Information technology - Programming languages - Fortran

OpenMP Application Program Interface Version 3.1 July 2011

2.5.1 Fortran コンパイル/リンク方法

FX100 用 Fortran コンパイラは frtpx コマンドを利用します。MPI ライブラリを使用する場合は、 mpifrtpx コマンドを利用します。

[FX100]

例1) 逐次プログラムをコンパイル/リンクする。

\$ frtpx sample.f90

例2) ノード内スレッド並列(自動並列)プログラムをコンパイル(リンクする。

\$ <u>frtpx</u> -Kparallel sample.f90

例3) ノード内スレッド並列(OpenMP)プログラムをコンパイル/リンクする。

\$ frtpx -Kopenmp sample.f90

例4)ノード内スレッド並列(自動並列+OpenMP)プログラムをコンパイル/リンクする。

\$ frtpx -Kparallel,openmp sample.f90

例5) MPI 並列プログラムをコンパイル/リンクする。

\$ mpifrtpx sample.f90

- 例6) ハイブリッド並列(スレッド(自動並列 or OpenMP)+MPI)プログラムをコンパイル/リンクする。
 - \$ mpifrtpx -Kparallel,openmp sample.f90

CX用 Fortran コンパイラは frt コマンドを利用します。MPI ライブラリを使用する場合は、mpifrt コマンドを利用します。(Intel コンパイラについては、9章で説明しています)

[CX]

例1) 逐次プログラムをコンパイル/リンクする。

\$ <u>frt</u> sample.f90

例2) ノード内スレッド並列(自動並列)プログラムをコンパイル/リンクする。

\$ frt -Kparallel sample.f90

例3) ノード内スレッド並列(OpenMP)プログラムをコンパイル/リンクする。

\$ <u>frt</u> -Kopenmp sample.f90

例4) ノード内スレッド並列(自動並列+OpenMP)プログラムをコンパイル/リンクする。

\$ frt -Kparallel,openmp sample.f90

例5) MPI 並列プログラムをコンパイル/リンクする。

\$ mpifrt sample.f90

例6) ハイブリッド並列(スレッド(自動並列 or OpenMP)+MPI)プログラムをコンパイル/リンクする。

\$ mpifrt -Kparallel,openmp sample.f90

2.5.2 コンパイルオプション

Fortranの主なコンパイルオプションは以下のとおりです。詳細は man コマンドを参照してください。

表 2-8 Fortran コンパイルオプション
->X

コンパイルオプション	説明
-C	オブジェクトファイルまで作成
-o exe_file	実行ファイル名/オブジェクトファイル名を exe_file に変更
	実行ファイル名を省略した場合は a.out
-I directory	INCLUDE ファイルまたはモジュール情報ファイルを検索するディレクトリを指定
-Fixed	ソースプログラムが固定形式で記述されていることを指示
	(デフォルトはファイル拡張子を参照して判断)
-Free	ソースプログラムが自由形式で記述されていることを指示
	(デフォルトはファイル拡張子を参照して判断)
-X6	言語仕様で解釈の異なる部分を FORTRAN66 仕様と解釈
-X7	言語仕様で解釈の異なる部分を FORTRAN77 仕様と解釈
-X9	言語仕様で解釈の異なる部分を Fortran95 仕様と解釈
-X03	言語仕様で解釈の異なる部分を Fortran2003 仕様と解釈
-fw	w レベル(低度のエラー)および s レベル(重度のエラー)の診断メッセージのみを
	出力
-fs	s レベル(重度のエラー)の診断メッセージのみを出力
-f msg_num	msg_num にメッセージ番号を指定することにより、特定の診断メッセージの出
	力を抑止
-Nmaxserious=maxnum	コンパイル時に検出された重度のエラーメッセージの数が maxnum に達した場
	合にコンパイルを中止
-Haefosux	コンパイル時および実行時に引数の整合性、添字式、部分列式の値、未定義
	な変数の参照または配列式の形状適合などを検査
-NRtrap	実行時の組込み演算の診断メッセージの出力の指示と、浮動小数点演算の
	割込み事象の検出を指示
-Qt	詳細な最適化情報および統計情報を出力
-V	コンパイラのバージョン情報を出力

2.5.3 最適化オプション

Fortranのオプションとして FX100 は「-Kfast -g -Ntl_trt -X9 -NRnotrap」、CX は「-Kfast」を設 定しています。設定オプション以外の最適化機能は、プログラムデータの特性によって効果がある場 合とそうでない場合があり、実際に動作して検証する必要があります。推奨オプションを指定する と、関連して複数の最適化オプションが誘導して実行されます。FX の主な最適化オプションは「表 2-8-2 最適化オプション(Fortran) [FX100]」のとおりです。CX の主な最適化オプションは「表 2-8-2 最適化オプション(Fortran) [CX]」のとおりです。 最適化は演算結果に影響を与える場合があります。詳細は man コマンドを参照してください。

コンパイルオプション	説明
-O [0,1,2,3]	最適化のレベルを指定。-Oの後の数字を省略した場合は -O3(デフォルト: -O2)
-Kdalign	オブジェクトが 8 バイト境界にあるものとして命令生成
-Kns	FPU を non-standard floating-point mode で初期化(デフォル
	ト:-Knons)
-Kmfunc	マルチ演算関数を使用する最適化を行うことを指示(デフォルト:-Knomfunc)
-Keval	演算の評価方法を変更する最適化を行うことを指示(デフォルト:-Knoeval)
-Kprefetch_conditional	if 構文や case 構文に含まれる配列データに対して、prefetch 命令を使用した
	オブジェクトを生成
-Kilfunc	一部の単精度及び倍精度の組込関数のインライン展開を指示(デフォル
	▶:-Knoilfunc)
-Kfp_contract	Floating-Point Multiply-Add/Subtract 演算命令を使用した最適化
	を行うかどうかを指示(デフォルト:-Knofp_contract)
-Kfp_relaxed	浮動小数点除算または SQRT 関数について、逆数近似演算命令と
	Floating-Point Multiply-Add/Subtract 演算を指示(デフォル
	<pre>\:-Knofp_relaxed)</pre>
-Kfast	ターゲットマシン上で高速に実行するオブジェクトプログラムを作成。
	オフション-O3 -Kdalign,
	eval,fp_contract,fp_relaxed,ilfunc,mfunc,ns,omitfp,prefetch_conditional &
-Kregion_extension	ハフレルリーションの拡大を実施。・Kparallelオフションか有効な場合に指定可能
-Kparallel	自動亚列を指定(テフォルト: -Knoparallel)
	-Kparallel オノンヨンか有効な場合、-O2,-Kregion_extension オノンヨンか誘導され
<u>Kuisimaast</u>	
-Kvisimpaci	-KIast, parallel オノンコンを指定した場合と守順
	取週16前御17で有約16(テノオルド・-KNOOCL) 本本式の生行証価を実施(デフォルト・Whentyper)
Kowp	「小変式の元1)計画で実施()フォルド・-Knopreex) いコトウェアパイプライニングの是海化を行うことを指示(デコナルト・ Knoown)
-NSWP Kshortloon-N	「クトックトンパーンクの取過化を1」)ことを指示(アクルト・・Kiloswp) 回転物の小さいループ向けの是海化を演用(N け 2 から 10)
-Kstripipa[_N]	回転数の小でいルーフロバの取過にで適用(N は 2)がり 10) ループフトライピングの是海化を行うことを指示(デフォルト・Knostrining)
-Kstriping[=N]	ループストプイビングの取過化を打力ととを指示くプライバート化を実施。Knorollal オ
-Nallay_plivate	ルーノ内のノノイベード心可能な配列に対して、ノノイベードルを実施。-Npatallel オ プションが右効な提合に音味あり(デフォルト:_Kpoarray_privata)
-Kauto	- ソリンが有効な場合に忘味のり。(ソフルト、- Kiloanay_phyace) SΔ\/F 届性を持つ変数なとび知道値をもつ変数を除く局所変数を automatic 変数
Radio	SAVE 周日を守って数のより初期値をつう変数を除く同所変数を、addonatic 変数 として扱い スタックに割り付けつける上う指示
-Ksimd[=1]2[auto]	SIMD 拡張命令を利用したオブジェクトを生成(デフォルト・-Ksimd=auto)
	-Ksimd=1 ·SIMD 拡張命令を利用したオブジェクトを生成
	-Ksimd=2:-Ksimd=1に加え、if 文などを含むループに対して、SIMD 拡張命令を利
	用したオブジェクトを生成
	-Ksimd=auto: SIMD 化するかどうかをコンパイラが自動的に判断
-Kopenmp	OpenMP 仕様の指示文を有効化 (デフォルト: -Knoopenmp)
-Koptmsg[=1 2]	最適化状況をメッセージ出力(デフォルト: -Koptmsg=1)
	-Koptmsg=1 :実行結果に副作用を生じる可能性がある最適化をした事をメッセー
	ジ出力
	-Koptmsg=2 :-Koptmsg=1 に加えて、自動並列化、SIMD 化、ループアンローリング
	などの最適化機能が動作したことをメッセージ出力
-KXFILL[=N]	ループ内で書き込みのみ行う配列データについて、データメモリからロードすることなく、
	キャッシュ上に書き込み用のキャッシュラインを確保する命令(XFILL 命令)を生成する
	ことを指示(デフォルト: -KNOXFILL)
	-O2オプション以上が有効な場合に指定可能

表 2-8-1 最適化オプション(Fortran) [FX100]

コンパイルオプション	説明
-O [0,1,2,3]	最適化のレベルを指定。-O の後の数字を省略した場合は -O3(デフォルト: -O2)
-Kns	FPU を non-standard floating-point mode で初期化(デフォル
	▶:-Knons)
-Kmfunc	マルチ演算関数を使用する最適化を行うことを指示(デフォルト:-Knomfunc)
-Keval	演算の評価方法を変更する最適化を行うことを指示(デフォルト:-Knoeval)
-Kprefetch_conditional	if 構文や case 構文に含まれる配列データに対して、prefetch 命令を使用した
	オブジェクトを生成
-Kfp_relaxed	浮動小数点除算または SQRT 関数について、逆数近似演算命令と
	Floating-Point Multiply-Add/Subtract 演算をを指示(デフォル
	<pre>h:-Knofp_relaxed)</pre>
-Kfast	ターゲットマシン上で高速に実行するオブジェクトプログラムを作成。
	-O3 -Keval,fp_relaxed,mfunc,ns,omitfp オプションの指定に加え、
	-KSSE2,SSE3,
	SSE4,AVX オプションを自動的に選択。
-Kregion_extension	パラレルリージョンの拡大を実施。-Kparallelオプションが有効な場合に指定可能
-Kparallel	自動並列を指定(デフォルト: -Knoparallel)
	-Kparallel オプションが有効な場合、-O2,-Kregion_extension オプションが指定可
	能
-Kocl	最適化制御行を指定(デフォルト:-Knoocl)
-Kpreex	不変式の先行評価を実施
-Karray_private	自動並列化を促進させるために、ループ内のプライベート化可能な配列に対して、プ
	ライベート化を実施。-Kparallel オプションが有効な場合に意味あり(デフォルト:
	-Knoarray_private)
-Kauto	SAVE 属性を持つ変数および初期値をもつ変数を除く局所変数を、automatic 変
	数として扱い、スタックに割り付けつけるよう指示スタックに割り付けるよう指示

表 2-8-2 最適化オプション(Fortran) [CX]

コンパイルオプションを追加することにより、推奨オプションの最適化機能を制御することができ ます。オプションの指定例を示します。

(1) 結果の精度が異なる場合

frtpx/frt では-Kfast を指定すると演算評価方法を変更する最適化(-Keval)が誘導されるため、精度に敏感な計算に影響を及ぼす場合があります。その場合は-Knoeval 指定により変更を抑止することができます。コンパイルオプションは後に指定されたものが優先されるため、-Kfast の後に noeval を指定します。

(2)[FX100]

\$ frtpx -Kfast,parallel,noeval sample.f90

[CX]

\$ frt -Kfast,parallel,noeval sample.f90

(3) コンパイルが長時間になる場合

最適化オプションのレベルを下げます。 [FX100]

\$ frtpx -Kfast,parallel -O2 sample.f90

[CX]

\$ frt -Kfast,parallel -O2 sample.f90

2.5.4 環境変数

Fortran コンパイラは、環境変数 FORT90CPX(CX の場合は FORT90C)をコンパイルオプションに 設定することができます。

FORT90CPX(CX の場合は FORT90C)に定義されたコンパイルオプションは、自動でコンパイラに 渡されます。

環境変数やシステムで定義されたコンパイルオプションには、次の優先順位があります。

- ① 翻訳指示行(-Koptions 指定時のみ)
- ② 翻訳コマンドのオペランド
- ③ 環境変数 FORT90CPX(CX の場合は FORT90C)
- ④ プロフィルファイル(システムで設定された値)

※-Kfast -g -Ntl_trt -X9 -NRnotrap が設定されています。

⑤ 標準値

ログインノード上で、推奨オプションを環境変数 FORT90CPX(CX の場合は FORT90C)に設定する 例を示します。

[FX100]

\$ export FORT90CPX=-Kfast,parallel

[CX]

\$ export FORT90C=-Kfast,parallel

有効になったコンパイルオプションは、·Qオプションにより確認することができます。

※sample.f90をコンパイルした場合には「sample.lst」というファイルが生成されます。

[-Q オプション指定時の出力例:(sample.lst)]

Fujitsu Fortran Version 2.0.0 Thu Aug 6 12:35:02 2015
Compilation information Current directory : /center/w49942a Source file : sample.f90
Option information
Environment variable : -Kfast,parallel
Command line options : -Q
Effective options : -fi -g0 -AE -Free -O3 -Q -X9
-x0
-Kadr44 -Knoauto -Knoautoobjstack -Knocalleralloc
-Kdalign -Keval -Knofed -Knofenv_access
-Kfp_contract -Kfp_relaxed -Kfsimple -Kilfunc
-Klargepage -Kloop_blocking -Kloop_fission
-Kloop_nofission_if -Kloop_fusion
-Kloop_interchange -Kloop_nopart_parallel
-Kloop_nopart_simd -Kloop_noversioning -Knonf -Kns
-Kmfunc=1 -Knoocl -Komitfp -Koptmsg=1 -Knopreex
-Kprefetch_conditional -Kprefetch_noindirect
-Kprefetch_sequential=auto -Kprefetch_nostride
-Kprefetch_cache_level=all-Kprefetch_noinfer

2.6 **C/C++**

C/C++コンパイラの利用方法を示します。

C/C++コンパイラは、以下の規格に準拠しています。 C JIS X 3010-1993(ISO/IEC 9899:1990) 、C JIS X 3010-2003(ISO/IEC 9899:1999) C++(ISO/IEC 14882:2003)、C++(ISO/IEC 14882:2011) OpenMP Application Program Interface Version 3.1 July 2011

2.6.1 C コンパイル/リンク方法

FX100 用 C コンパイラは fccpx コマンドを利用します。MPI ライブラリを使用する場合は、 mpifccpx コマンドを利用します。

[FX100]

例1) 逐次プログラムをコンパイル/リンクする。

\$ fccpx sample.c

例2) ノード内スレッド並列(自動並列)プログラムをコンパイル/リンクする。

\$ fccpx -Kparallel sample.c

※ 2015 年 9 月 1 日以降、-Kparallel 設定を行った際の最適化レベルのデフォルト値が、-O0 から -O2 に変更になりました。その為、コマンドを実行すると、その旨を知らせるメッセージが表示 されるようになりました。

例3) ノード内スレッド並列(OpenMP)プログラムをコンパイル/リンクする。

\$ fccpx -Kopenmp sample.c

例4)ノード内スレッド並列(自動並列+OpenMP)プログラムをコンパイル/リンクする。

\$ <u>fccpx</u> -Kparallel,openmp sample.c

例5) MPI 並列プログラムをコンパイル/リンクする。

\$ mpifccpx sample.c

例6) ハイブリッド並列(スレッド(自動並列 or OpenMP)+MPI)プログラムをコンパイル/リンクする。

\$ mpifccpx -Kparallel,openmp sample.c

CX 用 C コンパイラは fcc コマンドを利用します。MPI ライブラリを使用する場合は、mpifcc コマンドを利用します。

[CX]

例1) 逐次プログラムをコンパイル/リンクする。

\$ <u>fcc</u> sample.c

例2) ノード内スレッド並列(自動並列)プログラムをコンパイル/リンクする。

\$ fcc -Kparallel sample.c

- ※ 2015年4月3日以降、-Kparallel 設定を行った際の最適化レベルのデフォルト値が、-00から -02に変更になりました。その為、コマンドを実行すると、その旨を知らせるメッセージが表示 されるようになりました。
- 例3) ノード内スレッド並列(OpenMP)プログラムをコンパイル/リンクする。

\$ fcc -Kopenmp sample.c

例4) ノード内スレッド並列(自動並列+OpenMP)プログラムをコンパイル/リンクする。

\$ fcc -Kparallel,openmp sample.c

例5) MPI 並列プログラムをコンパイル/リンクする。

\$ mpifcc sample.c

例6) ハイブリッド並列(スレッド(自動並列 or OpenMP)+MPI)プログラムをコンパイル/リンクする。

\$ mpifcc -Kparallel,openmp sample.c

2.6.2 C++コンパイル/リンク方法

FX100 用 C++コンパイラは FCCpx コマンドを利用します。MPI ライブラリを使用する場合は、 mpiFCCpx コマンドを利用します。

[FX100]

例1) 逐次プログラムをコンパイル/リンクする。

\$ FCCpx sample.cc

例2) ノード内スレッド並列(自動並列)プログラムをコンパイル/リンクする。

\$ FCCpx -Kparallel sample.cc

※ 2015 年 9 月 1 日以降、-Kparallel 設定を行った際の最適化レベルのデフォルト値が、-O0 から -O2 に変更になりました。その為、コマンドを実行すると、その旨を知らせるメッセージが表示 されるようになりました。

例3) ノード内スレッド並列(OpenMP)プログラムをコンパイル/リンクする。

\$ FCCpx -Kopenmp sample.cc

例4) ノード内スレッド並列(スレッド+OpenMP)プログラムをコンパイル/リンクする。

\$ FCCpx -Kparallel,openmp sample.cc

例5) MPI 並列プログラムをコンパイル/リンクする。

\$ mpiFCCpx sample.cc

例6) ハイブリッド並列(スレッド(自動並列 or OpenMP)+MPI)プログラムをコンパイル/リンクする。

\$ mpiFCCpx -Kparallel,openmp sample.cc

CX用 C++コンパイラは FCC コマンドを利用します。MPI ライブラリを使用する場合は、mpiFCC コマンドを利用します。

[CX]

例1) 逐次プログラムをコンパイル/リンクする。

\$ FCC sample.cc

例2)ノード内スレッド並列(自動並列)プログラムをコンパイル/リンクする。

\$ FCC -Kparallel sample.cc

- ※ 2015年4月3日以降、-Kparallel 設定を行った際の最適化レベルのデフォルト値が、-O0から -O2に変更になりました。その為、コマンドを実行すると、その旨を知らせるメッセージが表示 されるようになりました。
- 例3) ノード内スレッド並列(OpenMP)プログラムをコンパイル/リンクする。

\$ FCC -Kopenmp sample.cc

例4) ノード内スレッド並列(スレッド+OpenMP)プログラムをコンパイル/リンクする。

\$ FCC -Kparallel,openmp sample.cc

例5) MPI 並列プログラムをコンパイル/リンクする。

\$ mpiFCC sample.cc

- 例6) ハイブリッド並列(スレッド(自動並列 orOpenMP)+MPI)プログラムをコンパイル/リンクする。
 - \$ mpiFCC -Kparallel,openmp sample.cc

2.6.3 コンパイルオプション

C/C++コンパイラの主なコンパイルオプションは以下のとおりです。 詳細は man コマンドを参照してください。

コンパイルオプション	説明
-C	オブジェクトファイルを作成
-o exe_file	実行ファイル名/オブジェクトファイル名を exe_file に変更
	実行ファイル名を省略した場合は a.out
-I directory	名前が / 以外で始まるヘッダの検索を、 directory で指定されたディレクトリを先に検索
	し、その後、通常のディレクトリを検索するように変更指定
-V	コンパイラのバージョン情報を標準エラーに出力
-Xg	GNU C コンパイラ仕様の言語仕様に基づいてコンパイル。GNU の拡張仕様とC99 規格
	を同時に指定する場合は、-noansiオプションを同時に指定する必要がある。
-NRtrap	実行時の割込み事象を検出するか否かを指示
-Nsrc	ソースリストを出力
-Nsta	統計情報を出力

表 2-9 コンパイルオプション(C/C++)

2.6.4 最適化オプション

C/C++の標準的なオプションとして FX100 は「-Kfast -g -Ntl_trt -Xa -NRnotrap」、CX は「-Kfast」 を設定しています。設定オプション以外の最適化機能は、プログラムデータの特性によって効果があ る場合とそうでない場合があり、実際に動作して検証する必要があります。推奨オプションを指定す ると、関連して複数の最適化オプションが誘導して実行されます。FX の主な最適化オプションは「表 2-9-1 最適化オプション(C/C++) [FX100]」のとおりです。CXの主な最適化オプションは「表 2-9-1 最 適化オプション(C/C++) [CX]」のとおりです。

最適化は演算結果に影響を与える場合があります。詳細は man コマンドを参照してください。

コンパイルオプション				
	しまう 			
-0 [0,1,2,3] Kdalian	取週化のレヘルを拍走。・O の仮の数子を自哈した场合は →O2(ナノオルト: -O0) ↓ オゴミュクトが。 バイト培用になるためとして今会なた式			
Kna	イノンエントかるハイト現外にのるものとして叩って王成			
-KIIS	$_$ FPU routestandard 110ating-point mode (初期化(アノイルト:-Knons)) フルチ 定 質 問 数 た 体 田 オ ス 是 海 ル た た た た た ナ / デ フ + リ し ・ π_{PD} の か 5 · · · · · · · · · · · · · · · · · ·			
-KIIIUIIC	│ マルナ演昇関数を使用する東週化を行うことを指示(テノオルト:-Knomtunc) │ 振進ニノゴニリ盟教の動作を認識して、見済化を促進の見たを指示(デュリリー)			
	標準フ1ノフリ関数の動作を認識して、取適化を促進の走非を指示(ナノオルト・			
Keyel				
-Keval	演昇の評価万法を変更する最適化を行うことを指示(アフォルト:-Knoeval)			
-Kraconv	4 ハ1ト付号付さ整数のルーノ変数かオーハノローしないと仮定した最適化を促進させる か否かを指示			
-Kprefetch conditional	」がはなどになって、 」」「構文や case 構文に含まれる配列データに対して prefetch 命令を使用したオブ			
	ジェクトを生成			
-Kilfunc	一部の単精度及び倍精度の組込関数のインライン展開を指示(デフォル			
	ト:-Knoilfunc)			
-Kfp_contract	Floating-Point Multiply-Add/Subtract 演算命令を使用した最適化を			
	行うかどうかを指示(デフォルト:-Knofp_contract)			
-Kfp_relaxed	浮動小数点除算または SQRT 関数について、逆数近似演算命令と			
	Floating-Point Multiply-Add/Subtract 演算をを指示(デフォル			
	ト:-Knofp_relaxed)			
-x	ソースプログラムで定義された全関数に対して、インライン展開を実施			
-Kfast	ターゲットマシン上で高速に実行するオブジェクトプログラムを作成。オプション-O3			
	-Kdalign,			
	eval,fast_matmul,fp_contract,fp_relaxed,ilfunc,lib,mfunc,ns,omitfp,			
	prefetch_conditional,Irdconv -x と等価			
-Kregion_extension	パラレルリージョンの拡大を実施。-Kparallel オプションが有効な場合に指定可能			
-Kparallel	自動並列を指定(デフォルト: -Knoparallel)			
	-Kfast オプションが有効な場合、-O2,-Kregion_extension,-mt オプションが誘導される			
-Kvisimpact	-Kfast,parallel オプションを指定した場合と等価			
-Kocl	最適化制御行を有効化(デフォルト: -Knoocl)			
-Kpreex	不変式の先行評価を実施(デフォルト: -Knopreex)			
-Karray_private	自動並列化を促進させるために、ループ内のプライベート化可能な配列に対して、プライ			
	ベート化を実施。-Kparallel オプションが有効な場合に意味あり。(デフォルト:			
	-Knoarray_private)			
-Kopenmp	OpenMP C 仕様のディレクティブを有効化(デフォルト:-Knoopenmp)			
-Ksimd[=1 2 auto nosimd]	SIMD 拡張命令を利用したオブジェクトを生成(デフォルト: -Ksimd=auto)			
	-Ksimd=1 :SIMD 拡張命令を利用したオブジェクトを生成。			
	-Ksimd=2 :-Ksimd=1 に加え、if 文などを含むループに対して、SIMD 拡張命令を利用			
	したオブジェクトを生成			
	-Ksimd=auto: SIMD 化するかどうかをコンパイラが自動的に判断			
-Koptmsg[=1 2 nooptmsg]	最適化状況をメッセージ出力(デフォルト: -Knooptmsg)			
	-Koptmsg=1 :実行結果に副作用を生じる可能性がある最適化をした事をメッセージ出			
	b			
	-Koptmsg=2 :-Koptmsg=1 に加えて、自動並列化、SIMD 化、ループアンローリングな			
	どの最適化機能が動作したことをメッセージ出力			
-Kswp	ソフトウェアパイプライニングの最適化を指示(デフォルト: -Knoswp)			
-Kshortloop=N	回転数の小さいループ向けの最適化を適用(Nは2から10)			
-Kstriping[=N]	ループストライピングの最適化を行うことを指示(デフォルト:-Knostriping)			

表 2-9-1 最適化オプション(C/C++) [FX100]

-KXFILL[=N]	ループ内で書き込みのみ行う配列データについて、データメモリからロードすることなく、キャ ッシュ上に書き込み用のキャッシュラインを確保する命令(XFILL 命令)を生成することを指 示(デフォルト: -KNOXFILL) -O2 オプション以上が有効な場合に指定可能
-------------	--

コンパイルオプション	説明
-O [0,1,2,3]	最適化のレベルを指定。-Oの後の数字を省略した場合は -O2(デフォルト: -O0)
-Kns	FPU を non-standard floating-point mode で初期化(デフォル
	ト:-Knons)
-Kmfunc	マルチ演算関数を使用する最適化を行うことを指示(デフォルト:-Knomfunc)
-Klib	標準ライブラリ関数の動作を認識して、最適化を促進の是非を指示(デフォルト:
	-Knolib)
-Keval	演算の評価方法を変更する最適化を行うことを指示(デフォルト:-Knoeval)
-Krdconv	4 バイト符号付き整数のループ変数がオーバフローしないと仮定した最適化を促
	進させるか否かを指示
-Kprefetch_conditional	if 構文や case 構文に含まれる配列データに対して、prefetch 命令を使用
	したオブジェクトを生成
-Kfp_relaxed	浮動小数点除算または SQRT 関数について、逆数近似演算命令と
	Floating-Point Multiply-Add/Subtract 演算をを指示(デフォル
	<pre>F:-Knofp_relaxed)</pre>
-X	ソースプログラムで定義された全関数に対して、インライン展開を実施
-Kfast	ターゲットマシン上で高速に実行するオブジェクトプログラムを作成
	-O3 -Keval,fast_mat-mul,fp_relaxed,lib,mfunc,ns,omitfp,rdconv,sse -x-
	と等価。(sse はマシンに合わせた最適化オプションを自動選択)
-Kparallel	自動並列を指定(デフォルト: -Knoparallel)
	-Kfastオプションが有効な場合、-O2,-Kregion_extension,-mtオプションが誘導
	される
-Kocl	最適化制御行を有効化(デフォルト: -Knoocl)
-Kpreex	不変式の先行評価を実施(デフォルト:-Knopreex)
-Karray_private	自動並列化を促進させるために、ループ内のプライベート化可能な配列に対して、
	プライベート化を実施。-Kparallel オプションが有効な場合に意味あり。(デフォル
	ト: -Knoarray_private)
-Kopenmp	OpenMP C 仕様のディレクティブを有効化(デフォルト:-Knoopenmp)
-Ksimd[=1 2 nosimd]	SIMD 拡張命令を利用したオブジェクトを生成(デフォルト: -Ksimd=1)
	-Ksimd=1 :SIMD 拡張命令を利用したオブジェクトを生成。
	-Ksimd=2 :-Ksimd=1 に加え、if 文などを含むループに対して、SIMD 拡張命令
	を利用したオブジェクトを生成
-Koptmsg[=1 2 nooptmsg]	最適化状況をメッセージ出力(デフォルト: -Knooptmsg)
	-Koptmsg=1 :実行結果に副作用を生じる可能性がある最適化をした事をメッセ
	ージ出力
	-Koptmsg=2 :-Koptmsg=1 に加えて、自動並列化、SIMD 化、ループアンローリ
	ングなどの最適化機能が動作したことをメッセージ出力
-Kswp	ソフトウェアパイプライニングの最適化を指示(デフォルト: -Knoswp)
-Kstriping[=N]	ループストライピングの最適化を行うことを指示(デフォルト: -Knostriping)

表 2-9-2 最適化オプション(C/C++) [CX]

2.6.5 環境変数(C コンパイラ)

C コンパイラが利用する環境変数を示します。

環境変数: fccpx_ENV(CX の場合は fcc_ENV)
 環境変数 fccpx_ENV(CX の場合は fcc_ENV)にコンパイルオプションを設定することができます。
 fccpx_ENV に定義されたコンパイルオプションは、自動でコンパイラに渡されます。
 環境変数やシステムで定義されたコンパイルオプションには、次の優先順位があります。

- ① 翻訳コマンドのオペランド
- ② 環境変数 fccpx_ENV(CX の場合は fcc_ENV)
- ③ プロフィルファイル(システムで設定された値)
 ※-Kfast -g -Ntl_trt -Xa -NRnotrap が設定されています。
- ④ 標準値

ログインノード上で推奨オプションを環境変数 fccpx_ENV(CX の場合は fcc_ENV)に設定する例を示します。

[FX100]

\$ export fccpx_ENV=-Kfast,parallel

[CX]

\$ export fcc_ENV=-Kfast,parallel

有効になったコンパイルオプションは、-Nstaオプションにより確認することができます。 ※sample.cをコンパイルした場合には、統計情報が標準出力に出力されます。 [-Nsta オプション指定時の出力例]

Fujitsu C/C++ Version 2.0.0 Thu Aug 6 13:57:02 2015
Statistics information
Option information
Environment variable : -Kfast,parallel
Command line options : -Nsta
Effective options : -noansi -g0 -mt -Qy -Xa -xO3 -Ka1 -Kadr44 -Knoalias_const
-Knoarray_private -Kconst -Kdalign -Knodynamic_iteration -Keval
-Kfast_matmul -Knofconst -Knofed -Knofenv_access -Kfp_contract
-Kfp_relaxed -Kfsimple -KGREG_APPLI -Kilfunc -Knoipo -Klargepage
-Klib -Kloop_blocking -Kloop_fission -Kloop_nofission_if
-Kloop_fusion -Kloop_interchange -Kloop_nopart_parallel
-Kloop_nopart_simd -Kloop_noversioning -Klooptype=f -Knomemalias
-Kmfunc=1 -Knonf -Kns -Knoocl -Komitfp -Knoopenmp -Knooptmsg
-Kparallel -Kparallel_nofp_precision -Knopreex
-Kprefetch_cache_level=all -Kprefetch_conditional
-Kprefetch_noindirect -Kprefetch_noinfer
-Kprefetch_sequential=auto -Kprefetch_nostride
-Kprefetch_nostrong -Kprefetch_strong_L2 -Krdconv -Kreduction
-Kregion_extension -Krestp=restrict -Knoshortloop -Ksimd=auto
-Knostriping -Kswp -Kunroll -Knouxsimd -KNOXFILL
-Ncancel_overtime_compilation -Nnoexceptions -Nnofjcex
-Nnohook_func -Nnohook_time -Nline -Nquickdbg=noheapchk
-Nquickdbg=nosubchk -NRnotrap -Nrt_notune -Nsetvalue=noheap
-Nsetvalue=nostack -Nsetvalue=noscalar -Nsetvalue=noarray
-Nsetvalue=nostruct -Nsta -Nuse_rodata

(2) 環境変数: TMPDIR

fccpx コマンド(CXの場合はfcc コマンド)が使用するテンポラリディレクトリを変更することができます。

2.6.6 環境変数(C++コンパイラ)

C++コンパイラが利用する環境変数を示します。

環境変数: FCCpx_ENV(CX の場合は FCC_ENV)
 環境変数 FCCpx_ENV(CX の場合は FCC_ENV)にコンパイルオプションを設定することができ

ます。

FCCpx_ENV に定義されたコンパイルオプションは、自動でコンパイラに渡されます。 環境変数やシステムで定義されたコンパイルオプションには、次の優先順位があります。

- ① 翻訳コマンドのオペランド
- ② 環境変数 FCCpx_ENV(CX の場合は FCC_ENV)
- ③ プロフィルファイル(システムで設定された値)
 ※-Kfast -g -Ntl_trt -Xa -NRnotrap が設定されています。
- ④ 標準値

ログインノード上で推奨オプションを環境変数 FCCpx_ENV(CX の場合は FCC_ENV)に設定する例を示します。

\$ export FCCpx_ENV=-Kfast,parallel

有効になったコンパイルオプションは、·Nstaオプションにより確認することができます。

※sample.ccをコンパイルした場合には、統計情報が標準出力に出力されます。

[-Nsta オプション指定時の出力例]

Fujitsu C/C++ Version 2.0.0	Thu Aug 6 14:59:32 2015
Statistics information	
Option information	
Environment variable : -ł	Kfast,parallel
Command line options :	Nsta
Effective options : -g	0 -mt -Qy -Xa -std=c++03 -xO3 -Ka1 -Kadr44 -Knoalias_const
	-Knoarray_private -Kdalign -Knodynamic_iteration -Keval
	-Kfast_matmul -Knofed -Knofenv_access -Kfp_contract -Kfp_relaxed
	-Kfsimple -KGREG_APPLI -Kilfunc -Klargepage -Klib -Kloop_blocking
	-Kloop_fission -Kloop_nofission_if -Kloop_fusion
	-Kloop_interchange -Kloop_nopart_parallel -Kloop_nopart_simd
	-Kloop_noversioning -Klooptype=f -Knomemalias -Kmfunc=1 -Knonf
	-Kns -Knoocl -Komitfp -Knoopenmp -Knooptmsg -Kparallel
	-Kparallel_nofp_precision -Knopreex -Kprefetch_cache_level=all
	-Kprefetch_conditional -Kprefetch_noindirect -Kprefetch_noinfer
	-Kprefetch_sequential=auto -Kprefetch_nostride
	-Kprefetch_nostrong -Kprefetch_strong_L2 -Krdconv -Kreduction
	-Kregion_extension -Kremove_inlinefunction -Knorestp
	-Knoshortloop -Ksimd=auto -Knostriping -Knostl_fast_new -Kswp
	-Kunroll -Knouxsimd -KNOXFILL -Ncancel_overtime_compilation
	-Nexceptions -Nnofjcex -Nnohook_func -Nnohook_time -Nline
	-Nquickdbg=noheapchk -Nquickdbg=nosubchk -NRnotrap -Nrt_notune

(2) 環境変数: TMPDIR

FCCpx コマンド(CX の場合は FCC コマンド)が使用するテンポラリディレクトリを変更することができます。

2.7 XPFortran

XPFortran コンパイラの利用方法を示します。

2.7.1 コンパイル/リンク方法

FX100 用 XPFortran コンパイラは xpfrtpx コマンドを利用します。

[FX100]

\$ xpfrtpx sample.f

CX用 XPFortran コンパイラは xpfrt コマンドを利用します。

[CX]

\$ xpfrt sample.f

2.7.2 特長

ーつの配列データを各ノードの主記憶上に分散して配置でき、各ノードの主記憶上から一つの配列 データとしてアクセス可能です。詳細については、「XPFortran 使用手引書」1.2.2 グローバル空間を ご参照ください。

2.7.3 留意事項

xpfrtpx コマンドを使用することにより、XPFortran プログラムのトランスレートが行われます。 その際、以下の形式の出力ファイルがカレントディレクトリに生成されます。 (出力ファイルのサフィックス:.mpi.f90、.mpi.f95、.mpi.f03)

(例)% xpfrtpx sampp.f90 → sampp.mpi.f90が作成される。

2.8 数値計算ライブラリ

FX100 向け数値計算ライブラリとして BLAS/LAPACK/ScaLAPACK ならびに SSLII/C-SSLII が利 用可能です。これらのライブラリは、SPARC64[™]Xlfx 向けチューニングを実施しています。

また、上記のライブラリについては、CX 用にも提供されています。

富士通 C/C++コンパイラにて数学ライブラリを使用する場合、数学ライブラリの製品マニュアルに 記載されている注意事項も合わせてご参照ください。

2.8.1 BLAS/LAPACK/ScaLAPACK

Fortran/C/C++コンパイラから BLAS/LAPACK/ScaLAPACK を利用可能です。

説明
ベクトル演算や行列演算ライブラリ
- Level3 全ルーチン、Level2 重要ルーチンでスレッド並列ルーチンを提供
線形代数ライブラリ
- 重要ルーチンでスレッド並列ルーチンを提供
線形代数メッセージパッシング並列ライブラリ
- ScaLAPACK2.0.2 の追加機能を提供

表 2-10 BLAS/LAPACK/ScaLAPACK 概要

コンパイル時に指定するオプションは以下のとおりです。

表 2-11 BLAS/LAPACK/ScaLAPACK オプション一覧

利用ライブラリ	並列性	指定オプション	備考
BLAS	逐次	-SSL2	
	スレッド並列	-SSL2BLAMP	
LAPACK	逐次	-SSL2	
	スレッド並列	-SSL2BLAMP	
ScaLAPACK			逐次版 BLAS/LAPACK をリンクする場合は
	MPI 並列	-SCALAPACK	-SSL2を、スレッド並列版 BLAS, LAPACKを
			リンクする場合には-SSL2BLAMP を指定する

[FX100]

例1) 逐次版 BLAS/LAPACK を利用する。

\$ frtpx -SSL2 sample.f

例2) スレッド並列版 BLAS/LAPACK を利用する。

\$ frtpx -Kopenmp -SSL2BLAMP sample.f

例3) ScaLAPACK を利用する(逐次版 BLAS/LAPACK をリンク)。

\$ mpifrtpx -<u>SCALAPACK -SSL2</u> sample.f

例4) ScaLAPACK を利用する(スレッド並列版 BLAS/LAPACK をリンク)。

\$ mpifrtpx -Kopenmp -SCALAPACK -SSL2BLAMP sample.f

[CX]

例1) 逐次版 BLAS/LAPACK を利用する。

```
$ frt -SSL2 sample.f
```

例2) スレッド並列版 BLAS/LAPACK を利用する。

\$ frt -Kopenmp -SSL2BLAMP sample.f

例3) ScaLAPACK を利用する(逐次版 BLAS/LAPACK をリンク)。

\$ mpifrt -SCALAPACK -SSL2 sample.f

例4) ScaLAPACK を利用する(スレッド並列版 BLAS/LAPACK をリンク)。

\$ mpifrt -Kopenmp -SCALAPACK -SSL2BLAMP sample.f

2.8.2 SSL II(Scientific Subroutine LibraryII)系 数学ライブラリ

Fortran/C/C++コンパイラから SSL II ライブラリを利用可能です。また C/C++コンパイラ向けに C-SSLII ライブラリが利用可能です。

ライブラリ名	説明
SSL-II	スレッドセーフな逐次計算向けの数値計算ライブラリ
	10 分野(線形計算、固有値固有ベクトル、非線形計算、極値問題、補間・近
	似、変換、数値微積分、微分方程式、特殊関数、疑似乱数)のサブルーチン等
SSL-II スレッド並列機能	並列効果の見込める重要機能にSMP向け並列処理に適合したインターフェース
	で並列数値計算アルゴリズム
	線形計算(連立1次方程式の直接解法および反復解法、逆行列、固有値問題
	等)、フーリエ変換、擬似乱数など
C-SSLII	Fortran 版 SSL II の逐次機能サブセットを C 言語インターフェースで利用可能
	スレッドセーフな逐次機能
C-SSLII スレッド並列機能	Fortran 版 SSL II スレッド並列機能のサブセットを C 言語インターフェースで利
	用可能
SSL II/MPI	富士通独自仕様で、MPI で並列化された 3 次元フーリエ変換ルーチン
高速 4 倍精度基本演算ラ	4 倍精度の値を double-double 形式で表現し、高速に演算を行うライブラリ
イブラリ	

表 2-12 SSL II 系 数学ライブラリ概要

コンパイル時に指定するオプションは以下のとおりです。SSL II(C-SSLII)ライブラリは、逐次機能とスレッド並列機能を持ちますが、サブルーチン名が異なるため、どちらも混在して利用可能です。

表 2-13 SSL II 系オプション一覧

利用ライブラリ	並列性	指定オプション	備考
	逐次	-SSL2	逐次版 BLAS/LAPACK をリンクする場合は
C-SSL II	スレッド並列	-SSL2BLAMP	-SSL2を、スレッド並列版 BLAS, LAPACKをリン
			クする場合には-SSL2BLAMP を指定する
SSL II/MPI	MPI 並列	-SSL2MPI	同時に-SSL2 または -SSL2BLAMP を指定する

[FX100]

例1) 逐次版 SSL II を利用する。

\$ frtpx -SSL2 sample.f
例2) スレッド並列版 SSL II を利用する。

\$ frtpx -Kopenmp -SSL2BLAMP sample.f

例3) 逐次版 C-SSL II を利用する。

\$ fccpx -Kopenmp -SSL2BLAMP sample.c

例4) SSL II/MPI を利用する。

\$ mpifrtpx -Kopenmp -SSL2MPI -SSL2 sample.f

[CX]

例1) 逐次版 SSL II を利用する。

\$ frt -SSL2 sample.f

例2) スレッド並列版 SSL II を利用する。

\$ frt -Kopenmp -SSL2BLAMP sample.f

例3) 逐次版 C-SSL II を利用する。

```
$ fcc -Kopenmp -SSL2BLAMP sample.c
```

例4) SSL II/MPI を利用する。

\$ mpifrt -Kopenmp -SSL2MPI -SSL2 sample.f

2.9 実行時環境変数

Fortran/C/C++プログラムにおいて、実行時に指定可能な主な環境変数について説明します。

環境変数	説明
PARALLEL	自動並列によりスレッド並列化されたプログラムを実行する場合は、環境変
	数 PARALLEL にスレッド数を指定します。省略時は、ジョブが利用可能な
	コア数(1ノード1プロセスの場合 16)が使用されます。
OMP_NUM_THREADS	OpenMP によりスレッド並列化されたプログラムを実行する場合は、環境
	変数 OMP_NUM_THREADS にスレッド数を指定します。
	省略時は、ジョブが利用可能なコア数(1ノード1プロセスの場合16)が使用
	されます。
THREAD_STACK_SIZE	スレッド毎のスタック領域の大きさを K バイト単位で指定します。
	省略時は、ulimit -s の値(unlimited)が使用されます。環境変数
	OMP_STACKSIZE が指定されている場合、大きい方の指定値がスタック領
	域の大きさの値になります。

表 2-14 実行時環境変数

2.10 エンディアン変換

エンディアンとは、多バイトの数値をメモリに格納する際の方式のことをいいます。例えば 1234 という数値を1バイト目に 12、2バイト目に 34 を格納する方法をビッグエンディアンといいます。逆に1バイト目に 34、2 バイト目に 12 を格納する方法をリトルエンディアンといいます。

FX100 システムの計算ノードは、ビッグエンディアンを採用しています。

実行時オプション(-Wl,Tu_no)(※u_no:装置番号)を指定することで、書式なし入出力でリトルエンディアンデータファイルを入出力できます。

- ※装置番号:入出力文に特定の番号を指定することで、存在しているファイルまたは新たに存在するファイルを を結びつけ入出力することができます。
- (1) 実行時オプションは、環境変数(FORT90L)で指定するか、または、実行可能モジュールの引数として指定します。
- (2) -WI,-T のみ指定すると、書式なし入出力とする装置番号の全てがリトルエンディアンの入出 カとなります。-WI,-T で装置番号を指定した場合、指定した装置番号に対して有効となりま す。

エンディアン変換の指定例を示します。次の例では、装置番号 10 について、書式なし入出力をリ トルエンディアンデータとしています。

```
#!/bin/sh
#----- pjsub option -----#
#PJM -L "rscgrp=fx-small" リソースグループ指定
#PJM <u>-L "node=1:mesh"</u> ノード数の指定(1次元形状)
#PJM -L "elapse=10:00" 経過時間指定
#PJM -j
#----- program execution -----#
export FORT90L=-Wl,-T10 環境変数の指定
./a.out
```

図 2-1 環境変数(FORT90L)による指定例

#!/bin/sh	
# pjsub option#	
#PJM -L "rscgrp=fx-small"	リソースグループ指定
#PJM <u>-L "node=1"</u>	ノード数の指定(1 次元形状)
#PJM -L "elapse=10:00"	経過時間指定
#₽JM −j	
# program execution#	
./a.out -Wl,-T10	

図 2-2 引数による指定例

なお、fcvendianpx コマンドで、エンディアンの変換を行うことも可能です。 詳細は「Fortran 使用手引書 付録 C エンディアン変換コマンド」をご参照ください。

\$	fcvendianpx	入力ファイル	出力ファイル	データ型
(例)			
\$	fcvendianpx	infile ou	utfile 8	

2.11 2GBを超えるファイル出力時の留意点

Fortran プログラムにおいて、実行時に 2GB を超える出力を行う場合は、以下の実行時オプションを指定してください。

\$ export FORT90L=-Wl,-Lu

3. ジョブ実行

3.1 ジョブシステム概要

システムの全ジョブは、ジョブ管理システムにより実行が制御されます。ユーザーはジョブ開始時 に必要なリソース名と CPU 数、経過時間などを指定し、ジョブ管理システムに対してジョブ実行を 指示します。

システムで利用可能なジョブはバッチジョブです。(「表 3-1 ジョブの種類」参照)

バッチジョブは、CPU やメモリなどの計算に必要なリソースが排他的に割り当てられます。

ジョブ形式	計算ノード数	用途
バッチジョブ/	2000	バッチ形式でジョブを実行する。 会話刑形式でジョブを実行する
会話型ジョブ	2880	云語空がれてフョンを実打する。 ノードダウンなどの異常発生時、ジョブの再実行が可能。
バッチジョブ	384 184	バッチ形式でジョブを実行する。 ノードダウンなどの異常発生時、ジョブの再実行が可能。
	ジョブ形式 バッチジョブ/ 会話型ジョブ バッチジョブ	ジョブ形式計算ノード数パッチジョブ/ 会話型ジョブ2880パッチジョブ384 184

表 3-1 ジョブの種類

※バッチジョブは投入形式によって、2種類に分類されます。

※システムダウンなどでジョブが異常終了した場合に再実行を行わないようにするには、pjsub --norestart オプションを付加します。デフォルトは、--restart です。

バッチジョブ種別	用途	投入形式
通常ジョブ	スクリプト単位でジョブを実行する。	「3.4.1 バッチジョブ投入」参照
ステップジョブ	投入した複数のジョブを 1 つのまとまりとして扱 い、その中で実行順序、依存関係をもつジョブ	「3.4.2 ステップジョブ投入」参 照
会話型ジョブ	コマンドラインでジョブを実行する。	「3.4.1 バッチジョブ投入」参照

表 3-2 バッチジョブの種類

ユーザーがジョブ操作に用いるコマンドは、以下のとおりです。

表 3-3 バッチジョブ操作コマンド一覧

機能	コマンド名
ジョブ投入	pjsub
会話型ジョブ投入	pjsubinteract
ジョブ参照	pjstat
ジョブ削除	pjdel
ジョブ保留	pjhold
ジョブ解除	pjrls

3.2 ジョブ実行リソース

3.2.1 リソースグループ

ジョブ管理システムは、リソースグループという単位で計算ノードを管理します。バッチジョブを 投入する場合、ユーザーはジョブを実行するためのリソースグループを指定します。指定可能なリソ ースグループは以下のとおりです。

リソース	B +	最大	最大経	過時間	最大	割当	方法 ^{※2}	
グループ名 (キュー名)	・最大 ノード数	сри コア 数	標準値	制限值	メモリ容量	Tofu	離散	備考
fx-interactive	4	128	1 時間	24 時間	28GiB × 4			<u>会話型</u> <u>ジョブ</u>
fx-debug	32	1,024	1 時間	1 時間	28GiB × 32	不可		<u>デバッグ用</u>
fx-small	16	512	24 時間	168 時 間	28GiB ×16			
fx-middle	96	3,072	24 時間	72 時間	28GiB × 96		可	
fx-large	192	6,144	24 時間	72 時間	28GiB ×192			
fx-xlarge	864	27,648	24 時間	24 時間	28GiB × 864	可		
fx-special ^{**1}	2592	82,944	unlimited		28GiB × 2592			<u>事前</u> <u>予約制</u>

表 3-4-1 FX100 システム リソースグループ(2015.9.1 更新) TOFU2 によるノード間通信に 2 レーンを用いたジョブクラスです。

備考) ユーザープログラムが使用可能なメモリ容量はノードあたり 28GiB です。

※1) 大規模ジョブ「fx-special」クラスをご利用したい場合は、下記の連絡先にご相談ください。
 【連絡先】電話:052-789-4372(内線:4372) Web(メール): https://qa.icts.nagoya-u.ac.jp/

※2) 割り当てのデフォルトは離散となっています。(2016.1.13 更新)

表 3-5-1-1 FX100 システム(ノード間通信強化型)リソースグループ(2017.4.11 更新) TOFU2 によるノード間通信に 4 レーンを用いてリンクバンド幅性能を強化したジョブクラス(試行) です。

リソースグループ	最大	最大 CPU	最大経	最大経過時間		最大経過時間 最大メモリ		割当力	5法 *3	備考	
	//////////////////////////////////////	コア数	標準値	制限值	谷里水2	Tofu	離散				
fx4-small ^{%1}	12	384	24 時間	48 時間	28GiB × 12	不可	可	ノード間通信 4 レーン			

※1) 全ノード(2880 ノード)の内、72 ノードがこのリソースグループに割当てられています。

※2) ユーザープログラムが使用可能な最大メモリ容量はノードあたり 28GiB です。

※3)割り当てのデフォルトは離散となっています。

表 3-6-1-2 FX100 システム(実行優先度強化型)リソースグループ(2019.4.2 更新)

実行優先度強化型リソースグループ(試行)で、TOFU2 によるノード間通信に 2 レーンを用いたジョブクラスです。

リソースグループ	最大	最大 CPU コ	最大経過時間		最大メモリ	割当力	5法* 3	備考
	∕ ⊓ 3 0	ア数	標準値	制限值	谷里木2	Tofu	離散	
fy middlo2 % 1	0.0	2 072	24 時	っっ時間	28GiB×	п	п П	ノード間通信
ix-iniddle2i	96	3,072	間	72 時间	96	ы	нј	2レーン

※1)他のジョブクラスよりも優先して実行されますが、実行には経過時間 1 秒につき 通常の倍 (0.004 ポイントに使用ノード数を乗じて得たポイント数)のポイントが必要です。

※2) ユーザープログラムが使用可能な最大メモリ容量はノードあたり 28GiB です。

※3)割り当てのデフォルトは離散となっています。

リソース	早十	是十	最大紹	過時間	是十					
グループ名 (キュー名)	していた。 していた数	取入 CPU コア数	標準値	制限值	取入 メモリ容量	備考				
cx-debug	4	112	1 時間	1 時間	112GiB × 4	デバッグ用				
cx-share ^{**1}	1/2	14	24 時間	168 時間	56GiB×1	ノード共有				
cx-small	8	224	24 時間	168 時間	112GiB × 8					
cx-middle	32	896	24 時間	72 時間	112GiB × 32					
cx-large	128	3,584	24 時間	72 時間	112GiB×128					
cx-special ^{**2}	384	10,752	unlimited		112GiB × 384	事前予約制				

表 3-4-2 CX400/2550 リソースグループ(2016.4.1 更新)

備考) ユーザープログラムが使用可能なメモリ容量はノードあたり 112GiB です。

※1) 1 ノードを 2 件のジョブで共有します。1 CPU (14 コア)、64GB のメモリを使ってジョブが 実行されます。課金は、1ノード占有した場合と同様です。このサービスを利用する場合は、ジ ョブ投入時に次の指定を行ってください。 #!/bin/sh #PJM -L "rscgrp=cx-share" #PJM -L "vnode=1" #PJM -L "vnode-core=14"

※2) 大規模ジョブ「cx-special」クラスをご利用したい場合は、下記の連絡先にご相談ください。 【連絡先】電話:052-789-4372(内線:4372) Web (メール):<u>https://qa.icts.nagoya-u.ac.jp/</u>

表 3-7-2-1 CX400/2550 システム(実行優先度強化型)リソースグループ(2019.4.2 更新)

リソース	= +	= +	最大紹	過時間	=+	
グループ名 (キュー名)	した ノード数		標準値	制限值	メモリ容量	備考
cx-middle2 ^{**1}	32	896	24 時間	72 時間	112GiB × 32	

実行優先度強化型リソースグループ(試行)です。

※1)他のジョブクラスよりも優先して実行されますが、実行には経過時間1秒につき通常の倍 (0.004 ポイントに使用ノード数を乗じて得たポイント数)のポイントが必要です。

備考) ユーザープログラムが使用可能なメモリ容量はノードあたり 112GiB です。

リソース	=_ =+		= +	最大経:	過時間	 +	
グループ名 (キュー名)	最大 ノード数	取入 CPU コア数	取入 Phi 数	標準値	制限值	取入 メモリ容量	備考
cx2-debug	4	96	4	1時間	1時間	112GiB×4	デバック用
cx2-single	1	24	1	24 時間	336 時間	112GiB \times 1	
cx2-small	8	192	8	24 時間	72 時間	112GiB×8	
cx2-middle	32	768	32	24 時間	72 時間	112GiB×32	
cx2-special ^{%1}	150	3,600	150	unlimited		112GiB×150	事前予約制

表 3-4-3 CX400/270 リソースグループ

備考) ユーザープログラムが使用可能なメモリ容量はノードあたり 112GiB です。

※1) 大規模ジョブ「cx2-special」クラスをご利用したい場合は、下記の連絡先にご相談ください。 【連絡先】電話:052-789-4372(内線:4372) Web (メール): https://qa.icts.nagoya-u.ac.jp/

3.3 ジョブ投入オプション

ジョブ投入時は、ジョブの実行に応じて、3つのオプションを指定します。CXはノードの配置オプ ションが指定可能です。

3.3.1 基本オプション

ジョブに指定する基本オプションは以下のとおりです。

オプション名	説明
fs <filesystem>[,<filesystem>]</filesystem></filesystem>	ジョブ実行時に利用するファイルシステムを指定
-g <groupname></groupname>	ジョブ実行時にジョブプロセスが所属するグループを指定
-j	ジョブの標準エラー出力を標準出力へ出力
-L	ジョブ資源に関するオプションを指定
mail-list	メールの送信先を指定
-m	メール通知を指定
b	ジョブ開始時にメール通知を指定
е	ジョブ終了時にメール通知を指定
r	ジョブ再実行時にメール通知を指定
mai	MPI プログラムの動作について指定
	詳細は「3.3.6 MPI オプション」を参照
-N <jobname></jobname>	ジョブ名を指定
-o <filename></filename>	標準出力を指定されたファイルに出力
	2016.4.1 <mark>追記</mark>
restart	障害発生時ジョブを再実行する(デフォルトです)
Testart	再実行しないようにするには、
	norestart としてください。
-step	ステップジョブを投入します。
jid=< <i>jobid></i>	関連付けるジョブ ID を指定
sn=< <i>stepno></i>	ステップ番号を指定
sd= <form></form>	依存関係式を指定
-X	ジョブ投入時の環境変数を計算ノードに引き継ぐ

表 3-5 ジョブ投入基本オプション

3.3.2 ジョブ資源オプション [FX]

FX についてジョブが利用する資源に関する主要オプションは以下のとおりです。-L オプションに 続けて利用資源を指定します。

	オプション名	説明
-L		ジョブ実行に必要な資源の上限値を指定
	elapse= <limit></limit>	経過時間を指定([[time:]minute:]secondで指定)
	node-mem= <limit></limit>	ノード単位の使用メモリ制限を指定
	rscgrp= <rsrgrp></rsrgrp>	投入するリソースグループ名を指定
	proc-core= <limit></limit>	プロセス単位の最大コアファイルサイズリミットを指定
	proc-data= <limit></limit>	プロセス単位の最大データセグメントサイズリミットを指定
	proc-stack= <limit></limit>	プロセス単位の最大スタックセグメントサイズリミットを指定

3.3.3 ノード形状の指定 [FX]

ノード形状、割り当て方法は-Lオプションの node パラメータで指定します。

表 3-7 FX100 ノード形状オプション

オプション名	説明
-L node	ノード数およびノード形状の指定

<	<shape></shape>	1 次元指定の場合は node=N1 2 次元指定の場合は node=N1xN2 3 次元指定の場合は node=N1xN2xN3
	torus	ジョブがノード専有ジョブの場合、ノードの割り当て方法(トーラスモード、 メッシュモード、離散割り当て)を指定できます。 torus は、Tofu 単位(12ノード)で計算機資源をジョブに割り当て
Ę	または	るトーラスモードを意味します。
:	mesh	mesh は、ノード単位で計算機資源をジョブに割り当てるメッシュモードを
	または	意味します。
:	noncont	noncont は、ノード単位で計算機資源をジョブに割り当てる離散割り
		当てを意味します。
		省略時は、ジョブ ACL 機能で定義されているデフォルト値に従います。

3.3.4 ノード単位または Tofu 単位でのノード割り当て[FX]

ノード専有ジョブに対する、ノード単位または Tofu 単位でのノード割り当てに関して以下を 指定できます。

・割り当てるノードの形状とノード数

・MPI プログラムを実行する場合、ノード割り当てのルール

割り当てるノードは、仮想的な 1 次元、2 次元、または 3 次元の空間に配置される形状として 指定します。

図 3-1 ノードの形状 (イメージ)

ノードの割り当て方法には、トーラスモード、メッシュモード、および離散割り当ての3種類が あります。

表 3-8 ノード割り当て方法

機能	コマンド名	
トーラスモード	ノードの最小割り当て単位は Tofu 単位(12ノード) です。	
	割り当てられるノードは、Tofu 座標上で隣接するノードが選択されます。	
メッシュモード	ノードの最小割り当て単位は 1 ノードです。	
	割り当てられるノードは、Tofu 座標上で隣接するノードが選択されます。	

離散割り当て	ノードの最小割り当て単位は1ノードです。
	割り当てられるノードは、できるだけ Tofu 座標上で隣接するように選択されます。
	以下の場合は隣接しないノードが選択されます。
	・隣接する空きノードがない場合
	・隣接しないノードを選択することでジョブの実行開始を早められる場合

3.3.5 ジョブ資源オプション [CX]

CX についてジョブが利用する資源に関する主要オプションは以下のとおりです。-L オプションに 続けて利用資源を指定します。また、-P オプションでノード配置を指定できます。

	オプション名	説明
-L		ジョブ実行に必要な資源の上限値を指定
	elapse= <limit></limit>	経過時間を指定([[time:]minute:]secondで指定)
	vnode=< <i>share></i>	vnode 数の指定
	vnode-core=< <i>share></i>	vnode-core 数の指定 ^{※1}
	rscgrp= <rsrgrp></rsrgrp>	投入するリソースグループ名を指定
-P		ノード配置の各種パラメタを指定
	"vn-policy=abs-unpack"	各ノードに強制的に 1 プロセスずつ配置
	"vn-policy=unpack"	可能な限り各ノードに分散してプロセスを配置
	"vn-policy=abs-pack"	各ノードにプロセスを強制的に配置
	"vn-policy=pack"	可能な限りプロセスを少ないノードに配置(デフォルト)

表 3-9 CX ジョブ資源オプション

※1) cx2550の場合、1ノードあたりのコア数が28のため、1,14,28のコア数指定を推奨します。
 cx270の場合、1ノードあたりのコア数が24のため、1,12,24のコア数指定を推奨します。

3.3.6 MPI オプション

MPI ジョブを実行する際に指定するオプションは以下のとおりです。--mpi オプションに続けて MPI 実行時の動作を指定します。

	オプション名	説明
mpi		MPI ジョブの各種パラメタを指定
	progenum	静的に起動する最大プロセス数を指定(フラットMPIの場合は指
		定必須)
	rank man hunodo [-rankman]	ノードに1プロセス生成すると、次のノードへ移動し、ラウンドロビン
	rank-map-bynode[=rankmap]	でランクを割り付ける(rank-map-bychipと排他)
	rank-map-bychip[: <i>rankmap</i>]	ノードに [proc÷shapeのnode数](小数点以下切り上げ)
		のプロセスを生成すると、次のノードへ移動し、ランクを割り付ける
		(rank-map-bynode と排他)
	rank-map-hostfile= <filename></filename>	filenameに従って生成するプロセスのランクを割り付ける

表 3-10 MPI オプション

3.4 バッチジョブ投入(pjsub コマンド)

バッチジョブを実行するためには、実行するプログラムとは別に「ジョブスクリプト」を作成し、 利用するジョブクラス、実行時間、CPU 数などの資源や実行形式を記載したオプションを記述した上 で、実行するプログラムを記載します。ユーザーはジョブスクリプトを pjsub コマンドで投入し、実 行を待ちます。投入されたジョブはスケジューラにより自動で実行開始、完了が制御されます。

3.4.1 バッチジョブ投入

バッチジョブを投入する場合、pjsub コマンドの引数にバッチジョブとして実行するスクリプトファイルを指定します。

pjsub [option] [script-file]

- スクリプトファイルを指定しない場合、標準入力から実行命令を読み込みます。
- ジョブ投入オプションは、スクリプトファイル内にディレクティブを用いて記載可能です。
- ジョブ投入が完了後、ジョブに対して識別用 ID(ジョブ ID)が割り当てられます。

例)バッチジョブ投入例

[username@fx01:~] pjsub go.sh	バッチジョブの投入
[INFO]PJM 0000 pjsub Job 12345 submitted.	

3.4.2 ステップジョブ投入

ステップジョブは、複数のバッチジョブを1つのまとまりとして扱い、その中で実行の順序関係や 依存関係を指定することで、ジョブチェイン機能を実現するジョブモデルです。ステップジョブは複 数サブジョブから構成され、各サブジョブは同時に実行されることはありません。ステップジョブの 動作イメージを以下に示します。

条件	説明
NONE	依存関係がないことを示す
終了ステータス == value[,value,value]	value には任意の値を指定可能
終了ステータス != value[,value,value]	「==」「!=」の場合は ","(カンマ)を用いて、value を
終了ステータス > value	複数指定可能
終了ステータス >= value	例:
終了ステータス < value	ec==1,3,5 → 終了ステータスが 1,3,5 のいずれか
終了ステータス <= value	であれば真
	ec!=1,3,5 → 終了ステータスが 1,3,5 のいずれで
	もない場合真

表 3-11 ステップジョブ依存関係式

表 3-12 ステップジョブ依存関係式で指定可能な削除タイプ

削除タイプ	説明
one	当該ジョブのみを削除します。
after	当該ジョブおよび当該ジョブに依存するジョブを再帰的に削除します。
all	当該ジョブ及び後続のすべてのジョブを削除します。

例)ステップジョブ投入例(ステップ番号を10に設定して投入)

```
[username@fx01:~] pjsub --step --sparam "sn=10" stepjobl.sh
[INFO]PJM 0000 pjsub Job 12345 submitted.
```

3.4.3 バッチジョブの終了確認

バッチジョブの実行が終了すると、標準出力ファイルと標準エラー出力ファイルがジョブスケジュ ーラの終了処理としてジョブ投入ディレクトリに出力されます。

標準出力ファイルにはジョブ実行中の標準出力、標準エラー出力ファイルにはジョブ実行中のエラ ーメッセージが出力されます。

ジョブ名.oxxxxx --- 標準出力ファイル

ジョブ名.exxxxx --- 標準エラー出力ファイル

ジョブ名.ixxxxx --- ジョブ統計情報出力ファイル(※pjsub コマンドの-S オプション指定時) (xxxxx はジョブ投入時に表示されるジョブのジョブ ID)

3.4.4 バッチジョブスクリプト記述

バッチジョブを投入するためには、vi コマンドや emacs コマンドにてスクリプトを作成します。

(1) 先頭行は "#!" に続けて、ジョブで利用するシェル名を指定してください。 [記述例]

<u>#!/bin/bash</u> bash を利用

(2) ジョブ投入オプションは pjsub コマンドのオプションまたはスクリプト中に"<u>#PJM</u>"を用いて 指定します。

[記述例]

#PJM -L	"node=1:mesh"	ノード数[FX100]	(メッシュモード)
$\frac{\#PJM}{\#PJM}$ -L	"node=1:torus"	ノート致[FX100]	$(F = J \land t = F)$
<u>#PJM</u> -L	"node=1:noncont"	ノード数[FX100]	(離散割り当て)
<u>#PJM</u> -L	"vnode=28"	仮想ノード数[CX25	50]
<u>#PJM</u> -L	"vnode=24"	仮想ノード数[CX27	0]
<u>#PJM</u> -L	"vnode-core=1"	仮想ノード数あたり	のコア数[cx]
<u>#PJM</u> -L	"elapse=1:00:00"	経過時間	

(3) ジョブ投入オプションに続けて、実行時の環境変数設定と、プログラムを指定します。

[記述例]

export PARALLEL=8	環境変数を設定
./a.out	プログラムを実行

3.4.4.1 逐次ジョブ用スクリプト

以下、FX100へのジョブ実行を想定した記述方法を説明します。
 ・ノード数 :1 ノード
 ・プロセス数(スレッド数) :1 プロセス(1 スレッド)

• 経過時間

[FX]

[username@fx01:Fortran] vi sample1.sh		
#!/bin/sh		
# pjsub option#	1 1 1	
#PJM -L "rscgrp=fx-small"	- - リソースグループ	
#PJM -L "node=1:mesh"	ノード数 [FX100]	
#PJM -L "elapse=10:00"	経過時間	
#₽JM −j	1 1 1	
#PJM −S		
# Program execution#		
./a.out	ジョブの実行	
<u>'</u> /		

:10分

・ノード数 :1 ノード(1 仮想ノード)
 ・プロセス数(スレッド数) :1 プロセス(1 スレッド)
 ・経過時間 :10 分

[CX]

[username@cx01:Fortran] vi sample1.sh			
¦#!/bin/sh			
# pjsub option#			
#PJM -L "rscgrp=cx-small"	- - リソースグループ		
#PJM -L "vnode=1"			
#PJM -L "elapse=10:00"	経過時間		
#PJM -j			
#PJM −S	1 1 1		
# Program execution#			
./a.out	ジョブの実行		
	1 4		

3.4.4.2 スレッド並列(自動並列)スクリプト

以下、FX100 へのジョブ実行を想定した記述方法を説明します。 ・ノード数、スレッド数 :1 ノード

・プロセス数(スレッド数)
 :1 プロセス(32 スレッド:自動並列)

• 経過時間

[FX100]

[username@fx01:Fortran] vi sample2.sh #!/bin/sh #----- pjsub option -----# **#**PJM -L **"**rscgrp=fx-small" ¦リソースグループ #PJM -L "node=1:mesh" ノード数 #PJM -L "elapse=10:00" 経過時間 #PJM −j 統計情報を出力 #PJM −S #----- Program execution -----# 自動並列用環境変数設定 export PARALLEL=32 ジョブの実行 ./a.out ・ノード数、スレッド数 :1ノード ・プロセス数(スレッド数) :1プロセス(28 スレッド:自動並列) • 経過時間 :10分 [CX] [username@cx01:Fortran] vi sample2.sh #!/bin/sh #----- pjsub option -----# リソースグループ #PJM -L "rscgrp=cx-small" [仮想ノード数 [CX] **#**PJM **-L** "vnode=1" ¦仮想ノードあたりのコア数[cx] **#PJM -L "vnode-core=28"** #PJM -L "elapse=10:00" 経過時間 #PJM −j #PJM −S #----- Program execution -----# export PARALLEL=28 自動並列用環境変数設定 ジョブの実行 ./a.out

:10分

3.4.4.3 スレッド並列(OpenMP)スクリプト

以下、FX100へのジョブ実行を想定した記述方法を説明します。

- ・ノード数、スレッド数(コア数)
- ・プロセス数(スレッド数)

- :1 ノード
- :1プロセス(32 スレッド:OpenMP)

• 経過時間

・1 フロセス(32 ス) :10 分

[FX100]

[username@fx01:Fortran] vi sample3.sh		
¦#!/bin/sh	-	
# pjsub option#		
#PJM -L "rscgrp=fx-small"	リソースグループ指定	
#PJM -L "node=1:mesh"	ノード数指定	
#PJM -L "elapse=10:00"	経過時間指定	
¦#₽ЈМ −ј		
₩PJM -S	統計情報を出力	
# Program execution#	1 1 1	
export OMP_NUM_THREADS=32	スレッド並列用環境変数設定	
./a.out	ジョブの実行	
i 		

以下、CX へのジョブ実行を想定した記述方法を説明します。

・ノード数、スレッド数(コア数)	:1 ノード
・プロセス数(スレッド数)	: 1 プロセス(28 スレッド:OpenMP)
 経過時間 	:10 分
[CX]	
[username@cx01:Fortran] vi sample3.sh	

[username@cx01:Fortran] v1 sample3.sh	
¦#!/bin/sh	-
# pjsub option#	
#PJM -L "rscgrp=cx-small"	リソースグループ
#PJM -L "vnode=1"	仮想ノード数[CX]
#PJM -L "vnode-core=28"	仮想ノードあたりのコア数[CX]
#PJM -L "elapse=10:00"	経過時間指定
#PJM -j	
¦ #PJM −S	
# Program execution#	
export OMP_NUM_THREADS=28	スレッド並列用環境変数設定
./a.out	ジョブの実行
	.1

3.4.4.4 MPI(1 次元形状)並列ジョブスクリプト[FX100]

以下、FX100へのジョブ実行を想定した記述方法を説明します。

・ノード数 : 12 ノード(1 次元)
 ・プロセス数(スレッド数) : 12 プロセス(1 スレッド)
 ・経過時間 : 10 分
 [FX100]

[username@fx01:MPI] vi sample4.sh	
#!/bin/sh	
# pjsub option#	
#PJM -L "rscgrp=fx-small"	リソースグループ
#PJM -L "node=12:mesh"	- ノード数(1 次元)
#PJM -L "elapse=10:00"	経過時間
#РЈМ -j	
#PJM −S	1 1 1
¦ # Program execution#	
mpiexec ./a.out	ジョブの実行
	-

3.4.4.5 MPI(2 次元形状)並列ジョブスクリプト[FX100]

以下、FX100へのジョブ実行を想定した記述方法を説明します。

- ・ノード数
- ・プロセス数(スレッド数)
- 経過時間
- 市王迎[
 - [FX100]

 [username@fx01:MPI] vi sample5.sh

 #!/bin/sh

 #----- pjsub option -----#

 #PJM -L "rscgrp=fx-small"

 #PJM -L "node=6x2:mesh"

 #PJM -L "elapse=10:00"

 #PJM -j

 #PJM -S

 #----- Program execution -----#

 mpiexec ./a.out
 ジョブの実行
- ・ノード数
- ・プロセス数(スレッド数)
- 経過時間
- [FX100]

:12 ノード(2 次元、トーラス)

:12 ノード(2 次元、メッシュ)

:12プロセス(1スレッド)

:10分

- :12 プロセス(1 スレッド)
- :10 分

3.4.4.6 MPI(3 次元形状)並列ジョブスクリプト[FX100]

以下、FX100へのジョブ実行を想定した記述方法を説明します。

- ・ノード数
- ・プロセス数(スレッド数)
- 経過時間

- :96 ノード(3 次元、メッシュ)
- :96 プロセス(1 スレッド)
- :10 分

[username@fx01:MPI] vi sample8.sh	
#!/bin/sh	1
¦ # pjsub option#	1 1 1
#PJM -L "rscgrp=fx-middle"	リソースグループ
#PJM -L "node=4x3x8:mesh"	ノード数(3 次元)、ノード割り当て指定
#PJM -L "elapse=10:00"	
¦ #PJM -j	1 1 1
#PJM −S	1 1 1
# Program execution#	
mpiexec ./a.out	ジョブの実行
<pre>#PJM -j #PJM -S # Program execution# mpiexec ./a.out</pre>	ジョブの実行

・ノード数	:96 ノード(3 次元、トーラス)
・プロセス数(スレッド数)	:96 プロセス(1 スレッド)
・経過時間	:10分
[username@fx01:MPI] vi sample9.sh	
#!/bin/sh	
# pjsub option#	
#PJM -L "rscgrp=fx-middle"	リソースグループ
#PJM -L "node=4x3x8:torus"	ノード数(3 次元)、ノード割り当て指定
#PJM -L "elapse=10:00"	経過時間
#РЈМ -j	
#PJM −S	
# Program execution#	
mpiexec ./a.out	ジョブの実行

・ノード数	:12 ノード(3 次元、離散割り当て)
・プロセス数(スレッド数)	:12 プロセス(1 スレッド)
• 経過時間	:10 分
[username@fx01:MPI] vi sample10.sh #!/bin/sh # pjsub option# #PJM -L "rscgrp=fx-small"	リソースグループ
#PJM -L "node=3x2x2:noncont"	¦ノード数(3 次元)、ノード割り当て指: '
#PJM -L "elapse=10:00"	

1		I
	#PJM -L "rscgrp=fx-small"	リソースグループ
į	<pre>#PJM -L "node=3x2x2:noncont"</pre>	ノード数(3 次元)、ノード割り当て指定
į	#PJM -L "elapse=10:00"	
	#₽JM −j	1 1 1
	#PJM −S	1 1 1
	# Program execution#	1 1 1
	mpiexec ./a.out	ジョブの実行
L		1

3.4.4.7 フラット MPI 並列ジョブスクリプト(1 ノード内複数プロセス)

以下のジョブ実行を想定した記述方法を説明します。

- ・ノード数
- ・プロセス数(スレッド数)

:12 ノード(1 次元)

:10分

: 192 プロセス(1 スレッド)

- 経過時間
- [FX100]

[username@fx01:MPI] vi sample11.sh						
#!/bin/sh	1					
# pjsub option#						
#PJM -L "rscgrp=fx-small"	リソースグループ					
#PJM -L "node=12:mesh"	- ノード数(1 次元)					
#PJMmpi "proc=192"	プロセス数					
¦ #PJM -L "elapse=10:00"	経過時間					
#РЈМ -j						
#PJM -S	1					
+ + Program execution#						
mpiexec ./a.out	ジョブの実行					
·;						

・ノード数

・プロセス数(スレッド数)

: 1 ノード(1 次元) : 28 プロセス(1 スレッド) : 10 分

• 経過時間 [CX]

[<i>usernam</i> e@cx01:MPI] vi sample4.sh							
#!/bin/sh	-						
# pjsub option#							
#PJM -L "rscgrp=cx-large"	リソースグループ						
#PJM -L "vnode=28"	仮想ノード数						
#PJM -L "vnode-core=1"	仮想ノードあたりのコア数						
#PJM -L "elapse=10:00"	経過時間						
#₽JM −j							
#PJM −S							
# Program execution#							
mpiexec ./a.out	ジョブの実行						
	1						

3.4.4.8 ハイブリッド MPI 並列ジョブスクリプト

以下のジョブ実行を想定した記述方法を説明します。

・ノード数 :12 ノード(1 次元) ・プロセス数(スレッド数) :12 プロセス(32 スレッド) • 経過時間 :10分 [FX100] [username@fx01:MPI] vi sample12.sh | #!/bin/sh #----- pjsub option -----# ¦リソースグループ **#PJM** -L **"**rscgrp=fx-small" #PJM -L "node=12:mesh" ノード数(1 次元) プロセス数 #PJM --mpi "proc=12" #PJM -L "elapse=10:00" 経過時間 #PJM −j #PJM −S #----- Program execution -----# ハイブリッド並列用環境変数 export OMP_NUM_THREADS=32 ・ジョブの実行 mpiexec ./a.out L_____

・ノード数	:8 ノード
・プロセス数(スレッド数)	:8プロセス(28スレッド)
• 経過時間	:10分

[<i>username</i> @cx01:MPI] vi sample5.sh								
¦#!/bin/sh								
# pjsub option#								
#PJM -L "rscgrp=cx-large"	リソースグループ							
#PJM -L "vnode=8"	仮想ノード数							
#PJM -L "vnode-core=28"	仮想ノードあたりのコア数							
#PJM -L "elapse=10:00"	経過時間							
¦ #PJM −S								
#PJM -j								
# Program execution#								
export OMP_NUM_THREADS=28	ハイブリッド並列用環境変数							
mpiexec ./a.out	ジョブの実行							
	_ 1							

3.5 ジョブ状態表示(pjstat コマンド)

[CX]

投入したジョブ状態やリソース情報を確認する場合、pjstat コマンドを使用します。 各クラスタのジョブ状況は、当該クラスタに属するログインノードでしか確認できません。

pjstat [option] [JOBID[JOBID...]]

オプション説明	内容
なし	自分の実行待ち、実行中のジョブ情報を表示
-A	全ユーザーのジョブ情報を表示(他人のユーザー名、ジョブ名は表示されない)
-Н	処理が終了したジョブ情報を表示
-E	ステップジョブ情報を表示
-s	-v オプションで出力される情報のほか、資源使用状況、資源制限値などの詳細情
	報を追加で表示
-S	-s オプションで出力される情報に加えて、そのジョブに設定されているノード単位の
	情報を表示
-v	標準形式で出力されない、ジョブ情報を追加して表示
rsc	リソースグループ情報を表示
limit	システム制限値を表示

表 3-13 pjstat コマンドオプション一覧

3.5.1 ジョブ状態表示

pjstat コマンドを実行すると、現在実行中もしくは実行待ちのジョブ状態を表示します。 [FX100] ※表示例

[u	[username@fx01:~] pjstat										
A	CCEPT (QUEUED STG	N READ	(RUNING	RUNOUT	STGOUT	HOLD	ERROR	TOTAL		
	0	0	0	0	2	0	0	0	0	2	
S	0	0	0	0	2	0	0	0	0	2	
JOE	_ID	JOB_NAME	MD ST	USER	START_	DATE	ELAP	SE_LIM N	ODE_REQUI	RE CORE V_MEM	
696	i	run_4. sh	NM RUN	user01	07/20	15:26:35	0000	:10:00 4	. – –		
697	,	run_4. sh	NM RUN	user01	07/20	15:26:36	0000	:10:00 4	. – –		

表 3-14 FX ショノ情報の表示項目	14 FX ジョブ情報の表示I	百日
----------------------	-----------------	----

項目	説明
JOB_ID	ジョブ ID
JOB_NAME	ジョブ名
MD	ジョブモード(normal,step)
ST	ジョブの現在の状態
USER	ユーザー名
RSCGRP	リソースグループ名(-vpattern=1 指定時のみ)
START_DATE	ジョブが実行前の場合は開始予測時刻("()"で表示)、実行中および実行後の場合は実際に実行を開始した時刻。
	実行開始時刻を指定して投入したジョブが実行を開始するまでの間、時刻の後ろに
	バックフィルが適用されたジョフは、時刻の後ろに「<」が出力される。
ELAPSE_LIM	ジョブの経過時間(実行中でないジョブは ":)
NODE_REQUIRE	ジョブのノード数とノード形状(nnnn:XXxYxZ)

[CX] ※表示例

[username@cx01:~] pjstat													
4	CCEPT 0	UEUED STGIN	READ	RUNING	RUNOUT	STGOUT	HOLD	ERROR	TOTAL				
	0	0	0	1	0	0	0	0	0	1			
s	0	0	0	1	0	0	0	0	0	1			
JOE	B_ID	JOB_NAME	MD ST	USER	START	DATE	ELAP	SE_LIM N	ODE_REQUIRE	VNOD	E COF	RE V_MEM	
888	}	sample1.sh	NM RUN	user01	02/20	17:36:40	0000:	10:00 -		1	1	unlimited	

= 0 45 014		
表 3-15 CX	ショノ情報0)表示項目

項目	説明
JOB_ID	้ วัรว ั ID
JOB_NAME	ジョブ名

MD	ジョブモード(normal,step)
ST	ジョブの現在の状態
USER	ユーザー名
RSCGRP	リソースグループ名(-vpattern=1 指定時のみ)
START_DATE	ジョブが実行前の場合は開始予測時刻("()"で表示)、実行中および実行後の場合
	は実際に実行を開始した時刻。
	実行開始時刻を指定して投入したジョブが実行を開始するまでの間、時刻の後ろに
	「@」が出力される。
	バックフィルが適用されたジョブは、時刻の後ろに「<」が出力される。
ELAPSE_LIM	ジョブの経過時間(実行中でないジョブは":)
NODE_REQUIRE	ジョブ投入時のノード数 "nnnnnn " (指定がない場合は " - "を出力)
VNODE	仮想ノード数 "nnnnnn"
CORE	仮想ノードあたりの CPU コア数 "nnn"
V_MEM	仮想ノードあたりのメモリ量(vnode-mem)"nnnnnnnnnnMiB"
	cpu-memが指定されている場合はvnode-memに変換して(CPUコア数で乗算する)
	出力

表 3-16	ジョブの状態ー	皆
1010		52

状態	説明
ACCEPT	ジョブ受け付け待ち状態
QUEUED	ジョブ実行待ち
STGIN	ステージイン中(FX100)
READY	ジョブ実行開始待ち状態
RUNNING	ジョブ実行中
RUNOUT	ジョブ終了待ち状態
STGOUT	ステージアウト中のジョブ数(FX100)
HOLD	ユーザによる固定状態のジョブ数
ERROR	エラーによる固定状態のジョブ数

3.5.2 詳細ジョブ情報の表示(-v オプション)

-v オプションを指定すると、詳細なジョブ情報を表示します。 [FX100]※表示例

[use	rna	me@	ofx(01:	~] <u>p</u>	jstat	-v								
ACCE	PT Q	JEUEI) ST	TGIN	READY	RUNING	RUNOUT	STGOUT	HOLD	ERROF	TOTAL				
	0	()	0	0	1	0	0	0	C) 1				
S	0	()	0	0	1	0	0	0	C) 1				
JOB_ID)	JOB_	NAME	E M	D ST l	JSER	GROUP	START	_DATE	E	LAPSE_TIM	ELAPSE_LIM NODE_RE	EQUIRE	VNODE	CORE
V_MEM	LST	EC	PC	SN P	RI ACC	EPT	RS	C_UNIT RE	ASON						
577		g0. :	sh	Ν	IM RUN	user01	grp1	06/1	5 16:13	3:33	0000:00:15	5 0048:00:00 2		-	-
-	RNA	0	0	0 3	0 09/	15 16:1	2:32 fx	-							

表 3-17 詳細ジョブ情報の表示項目(追加項目のみ)

オプション名	説明
GROUP	実行ユーザのグループ名
	ステップジョブのサマリ情報の場合は、実行中のサブジョブの情報を出力します。
	実行中のサブジョブがない場合、次に実行される予定のサブジョブの情報を出力しま
	す。
ELAPSE_LIM	ジョブの経過時間制限
LST	ジョブの以前の処理状態
EC	ジョブスクリプトの終了コード
	ステップジョブのサマリ情報の場合は、"-"を出力します。
PC	ジョブ終了コード (PJM コード)
	ジョブ実行における、ジョブマネージャーの処理結果を示すコードです。
	ステップジョブのサマリ情報の場合は、"-" を出力します。
	コードの意味は以下のとおりです。
	0:ジョブの正常終了
	1:pjdel コマンドによる CANCEL
	2:ジョブの受け付け拒否判定による REJECT
	3:改札制御による実行拒否
	4:pjhold コマンドによる HOLD
	6:ステップジョブ依存関係式による CANCEL
	7:デッドライン強制指定により CANCEL
	8:改札制御により CANCEL
	9:再実行不可指定のため、ジョブ再構築時に EXIT
	10:CPU 時間制限違反によるジョブ実行タイムアウト
	11:経過時間制限違反によるジョブ実行タイムアウト
	12:メモリ使用量超過による強制終了
	13:ディスク使用量超過による強制終了
	16:カレントディレクトリまたは標準入力/標準出力/標準エラー出力ファイルへのアクセ
	ス不可による終了
	20: ノードダウン

SN	シグナル番号
	ステップジョブのサマリ情報の場合は、"-"を出力します。
PRI	ジョブの優先度(0: 低 <-> 255:高)
ACCEPT	ジョブの投入日時 "MM/DD hh:mm:ss"
RSC_UNIT	ジョブ投入時のリソースユニット
	ステップジョブのサマリ情報の場合は、"-"を出力します。
REASON	エラーメッセージ

[CX]※表示例

] [usern	ame@c	cx01:	~] <u>p</u> :	jstat	-v							
	ACCEPT	QUEUED	STGIN	READY	RUNING	RUNOUT	STGOUT	HOLD	ERROR	TOTAL			
	0	0	0	0	1	0	0	0	0	1			
s	0	0	0	0	1	0	0	0	0	1			
J	B_ID	JOB_N	NAME	MD ST	USER	GROU	P S1	TART_DAT	E	ELAPSE_1	TIM ELAPSE_LIM NODE_REQUIRE	Ξ	VNODE
CC	RE V_ME	M	V_POL	E_POL	RANK	LST	EC PC	SN PRI	ACCEP	Т	RSC_UNIT REASON		
89	5	sampl	e1.sh N	IM RUN V	w49942a	center	02/2	20 18:03	3:22 0	000:00:01	0000:10:00 4	1	1
ur	limited	I PAC	K SMPL	Х –	R	NP 0 () 0	127 02/2	0 18:0	3:21 cx	-		

表 3-18 詳細ジョブ情報の表示項目(追加項目のみ)

オプション名	説明
GROUP	実行ユーザのグループ名
ELAPSE_LIM	実行経過時間"hhhh:mm:ss"
V_POL	仮想ノード配置ポリシー
	A_PCK : Absolutely PACK
	PACK : PACK
	A_UPK : Absolutely UNPACK
	UPCK : UNPACK
E_POL	実行モードポリシー
	SHARE : SHARE
	SMPLX : SIMPLEX
RANK	ランクマップの指定方法
	bynode : rank-map-bynode
	bychip : rank-map-bychip
LST	ジョブの以前(「ジョブの現在の処理状態」に遷移する前)の処理状態
EC	ジョブスクリプトの終了コード
PC	ジョブ終了コード(PJM コード)
	0:ジョブの正常終了
	1:pjdelコマンドによる CANCEL
	2:ジョブの受け付け拒否判定による REJECT
SN	シグナル番号
PRI	ジョブの優先度
	緊急ジョブの優先度は 256、非緊急ジョブの優先度は 0 から 255
ACCEPT	ジョブの投入日時 ″MM/DD hh:mm:ss″

RSC_UNIT	ジョブ投入時のリソースユニット
REASON	エラーメッセージ
	ジョブを実行する、しないに関わらず、そのジョブの何らかの処理に対する結果コードに対応するメッ セージ

3.5.3 終了ジョブ情報の表示(-H オプション)

-H オプションを指定すると、過去に投入したジョブで、既に実行が終了したジョブの一覧(終了ジョブー覧)を表示します。

[FX100]

[υ	ısern	<i>am</i> e@f	x01:	~] <u>p</u>	jstat	-H										
ļ	ACCEPT	QUEUED	STGIN	READY	RUNING	RUNOUT	STGOU	IT HO	LD	ERROR	TOTAL					
	0	0	0	0	0	0		0	0	0	0					
s	0	0	0	0	0	0		0	0	0	0					
F	REJECT	EXIT	CANCEL	TOTA	-											
	C) 5	7	7	64											
S	C)	0	0	0											
JO	B_ID	JOB	NAME	MD S	r usef	x s	TART_	DATE		ELAPS	E_LIM	NODE_	REQUI	RE	VNODE	CORE V_MEM
65	7	g0.	sh	NM E	XT usei	r01 (06/21	15:30	:54	0000:	10:00	12	-	-	-	
66	0	g0.	sh	NM C	CL use	r01 (06/21	15:40	:41	0000:	10:00	12	-	-	-	

表	3-19	FΧ	ジョ	ョフ	が情報	の表	示	項	
---	------	----	----	----	-----	----	---	---	--

項目	説明
JOB_ID	วั ่าวี ID
JOB_NAME	ジョブ名
MD	ジョブモード(normal,step)
ST	ジョブの現在の状態
USER	ユーザー名
RSCGRP	リソースグループ名(-vpattern=1 指定時のみ)
START_DATE	ジョブが実行前の場合は開始予測時刻("()"で表示)、実行中および実行後の場合 は実際に実行を開始した時刻。 実行開始時刻を指定して投入したジョブが実行を開始するまでの問い時刻の後ろに
	「②」が出力される。
	バックフィルが適用されたジョブは、時刻の後ろに「<」が出力される。
ELAPSE_LIM	ジョブの経過時間(実行中でないジョブは ":)
NODE_REQUIRE	ジョブのノード数とノード形状(nnnn:XXxYxZ)

[CX]

[us	[username@cx01:~] pjstat -H											
AC	CEPT Q	UEUED STG	IN READ	OY RUNING	RUNOUT S	TGOUT	HOLD	ERROR	TOTAL			
	0	0	0	0 0	0	0	0	0	0			
s	0	0	0	0 0	0	0	0	0	0			
RE	JECT	EXIT CANC	EL TOT	AL								
	0	57	7	64								
s	0	0	0	0								
JOB_	ID	JOB_NAME	MD ST	USER	START_D	ATE	ELAP	SE_LIM N	IODE_REQUIRE	VNODE	CORE	V_MEM
479		go. sh	NM EX1	w49942a	02/18 1	0:43:28	0024	:00:00 -	-	24	1	unlimited
480		go. sh	NM EX1	w49942a	02/18 1	1:06:14	0024	:00:00 -	-	24	1	unlimited

表 3-20 CX ジョブ情報の表示項目

項目	説明
JOB_ID	ับ ร ว ี ID
JOB_NAME	ジョブ名
MD	ジョブモード(normal,step)
ST	ジョブの現在の状態
USER	ユーザー名
RSCGRP	リソースグループ名(-vpattern=1 指定時のみ)
START_DATE	ジョブが実行前の場合は開始予測時刻("()"で表示)、実行中および実行後の場合 は実際に実行を開始した時刻。 実行開始時刻を指定して投入したジョブが実行を開始するまでの間、時刻の後ろに 「@」が出力される。 バックフィルが適用されたジョブは、時刻の後ろに「<」が出力される。
ELAPSE_LIM	ジョブの経過時間(実行中でないジョブは″:)
NODE_REQUIRE	ジョブ投入時のノード数 "nnnnnn" (指定がない場合は "-"を出力)
VNODE	仮想ノード数 "nnnnnn"
CORE	仮想ノードあたりの CPU コア数 "nnn"
V_MEM	仮想ノードあたりのメモリ量(vnode-mem)"nnnnnnnnmMiB" cpu-memが指定されている場合はvnode-memに変換して(CPUコア数で乗算する) 出力

3.5.4 リソースグループの表示(--rsc オプション)

--rsc オプションを指定すると、ユーザーが利用可能なリソースグループを表示します。

[FX100]

※表示例)

[username@fx01:~] pjstatrsc					
RSCUNIT	RSCUNIT_SIZE	RSCGRP	RSCGRP_SIZE		
fx[ENABLE, START]	4x7x9	fx-interactive[ENABLE, START]	8x3x18		
fx[ENABLE, START]	4x7x9	fx-debug[ENABLE, START]	8x3x18		
fx[ENABLE, START]	4x7x9	fx-small[ENABLE, START]	8x3x18		
fx[ENABLE, START]	4x7x9	fx-middle[ENABLE,START]	8x18x18		
fx[ENABLE, START]	4x7x9	fx-large[ENABLE, START]	8x18x18		
fx[ENABLE, START]	4x7x9	fx-xlarge[ENABLE, START]	8x18x18		
fx[ENABLE, START]	4x7x9	fx-special[ENABLE, STOP]	8x18x18		
RSCUNIT fx[ENABLE, START] fx[ENABLE, START] fx[ENABLE, START] fx[ENABLE, START] fx[ENABLE, START] fx[ENABLE, START] fx[ENABLE, START]	RSCUNIT_SIZE 4x7x9 4x7x9 4x7x9 4x7x9 4x7x9 4x7x9 4x7x9 4x7x9 4x7x9	RSCGRP fx-interactive[ENABLE, START] fx-debug[ENABLE, START] fx-small[ENABLE, START] fx-middle[ENABLE, START] fx-large[ENABLE, START] fx-xlarge[ENABLE, START] fx-special[ENABLE, STOP]	RSCGRP_SIZE 8x3x18 8x3x18 8x3x18 8x18x18 8x18x18 8x18x18 8x18x18 8x18x18		

[CX]

※表示例)

[username@cx01:~] pjstatrsc					
RSCUNIT	RSCUNIT_SIZE	RSCGRP	RSCGRP_SIZE		
cx[ENABLE, START]	584	cx-debug[ENABLE, START]	400		
cx[ENABLE, START]	584	cx-single[ENABLE,START]	400		
cx[ENABLE, START]	584	cx-small[ENABLE, START]	400		
cx[ENABLE, START]	584	cx-middle[ENABLE,START]	400		
cx[ENABLE, START]	584	cx-large[ENABLE, START]	400		
cx[ENABLE, START]	584	cx-special[ENABLE,START]	400		
cx[ENABLE, START]	584	cx2-debug[ENABLE, START]	184		
cx[ENABLE, START]	584	cx2-small[ENABLE, START]	184		
cx[ENABLE, START]	584	cx2-middle[ENABLE,START]	184		
cx[ENABLE, START]	584	cx2-large[ENABLE, START]	184		
cx[ENABLE, START]	584	cx2-special[ENABLE,START]	184		

表 3-21 リソースグループの表示項目

項目	説明
RSCUNIT	リソースユニット名とその状態
	「状態」には以下があります。
	ENABLE: ジョブの投入は可能
	DISABLE: ジョブの投入は不可
	START : ジョブは実行可能
	STOP : ジョブは実行不可

RSCUNIT SIZE	リソースユニットのサイズ			
	[FX100]			
	Tofu 単位の数を1辺の長さとする X、Y、Z 軸方向の直方体として表現されます。			
	書式: XxYxZ			
	[cx]			
	リソースユニットを構成するノード数 № が表示されます。			
RSCGRP	リソースグループ名			
RSCGRP_SIZE	リソースグループのサイズ(投入、実行可否)			

3.6 ジョブキャンセル(pjdel コマンド)

投入済みのジョブをキャンセルする場合、pjdel コマンドを実行します。

pjdel [JOBID [JOBID...]]

ジョブのジョブ ID を pjdel の引数に指定します。

[username@fx01:~] pjdel 670

[INFO] PJM 0100 pjdel Job 670 canceled.

3.7 ジョブ保留(pjhold コマンド)

投入済みのジョブ実行を保留する場合、pjhold コマンドを指定します。

pjhold [-R <reasonmessage>] [JOBID [JOBID...]]

ジョブのジョブ ID を pjhold の引数に指定します。

[username@fx01:~] pjhold 671

[INFO] PJM 0300 pjhold Accepted job 671.

表 3-22 ジョブ保留コマンドオプション一覧

オプション名	説明
-R reasonmessage	ジョブを保留した理由を指定。指定した文字列は、pjstat -v
	の出力結果のREASONに出力。

3.8 ジョブ開放(pjrls コマンド)

保留されたジョブを解除する場合、pjrls コマンドを指定します。

pjrls [JOBID [JOBID...]]

ジョブのジョブ ID を pjrls の引数に指定します。

```
[username@fx01:~] pjrls 671
[INFO] PJM 0400 pjrls jobid 671 released.
```

4. MPI 実行

並列ジョブを実行する場合、ジョブスクリプトの投入オプションに--mpi オプションを付与します。

4.1 MPI プログラム実行

MPI ライブラリを付与した実行モジュールを実行するために、mpiexec コマンドを利用します。

mpiexec [option] 実行モジュール

オプション名	説明			
	MPI プログラムのプロセス数を指定			
-n <proc_num></proc_num>	設定しない場合、mpiオプションで指定したプロセス数が設定される			
-of <fname></fname>	並列プロセスの標準出力および標準エラー出力をファイル名 fname に出力			
	並列プロセスの標準出力および標準エラー出力をプロセス毎にファイル			
-oi-proc <iname></iname>	名 "fname.ランク番号"に出力			
-oferr <i><fname></fname></i>	並列プロセスの標準エラー出力をファイル名 fname に出力			
-oferr-proc <i><fname></fname></i>	並列プロセスの標準エラー出力をファイル名 "fname.ランク番号"に出力			
-ofout <i><fname></fname></i>	並列プロセスの標準出力をファイル名 fname に出力			
-ofout-proc <i><fname></fname></i>	並列プロセスの標準出力をファイル名 "fname.ランク番号"に出力			
-stdin <i><fname></fname></i>	全並列プロセスの標準入力を、ファイル名 fname から読み込む			

表 4-1 オプション一覧

4.1.1 標準出力/標準エラー出力/標準入力

MPI プログラムの標準出力/標準エラー出力/標準入力の指定方法を示します。mpiexec では、標準出力/標準エラー出力をファイルに出力するオプション、ファイルから標準入力を読み込むオプションを用意しています。

- 各並列プロセスと mpiexec コマンドの標準出力/標準エラー出力は、通常はジョブ運用ソフト ウェアによって生成されるジョブ実行結果ファイル(ジョブ名.o.ジョブ ID/ジョブ名.e.ジョブ ID)に出力されます。
- mpiexec コマンドのリダイレクション指定による標準入力は、各並列プロセスの標準入力として使用することはできません。
- (1) 並列プロセスの標準出力を指定ファイルに出力します。標準出力を"file_stdout" に出力す る例を示します。

mpiexec -ofout file_stdout -n 8 ./a.out

(2) 並列プロセスの標準エラー出力を指定ファイルに出力します。標準エラー出力を "file_stderr" に出力する例を示します。

(3) 並列プロセスの標準出力および標準エラー出力を指定ファイルに出力します。標準出力および 標準エラー出力を"file_outfile" に出力する例を示します。

(4) 各並列プロセスの標準出力を別ファイルに出力します。各並列プロセスからの標準出力は、 -ofout-proc に指定したファイル名にランク番号が付加された名前で出力されます。

(5) 各並列プロセスの標準エラー出力を別ファイルに出力します。各並列プロセスからの標準エラ

(6) 各並列プロセスの標準出力および標準エラー出力を別ファイルに出力します。各並列プロセス からの標準出力/標準エラー出力は、-of-proc に指定したファイル名にランク番号が付加され た名前で出力されます。

4.2 MPI ジョブ投入時の指定

MPI ジョブ投入時には、pjsub コマンドの --mpi オプションを利用して、起動プロセス形状の指定、ランク割付ルールの指定、起動プロセスの最大値の指定が可能です。

表 4-2 起動プロセスの割付け方法

指定方法	指定オプション
起動プロセス形状を指定する	pjsubmpi shape (FX100 ${\it O}{\it B}$)
起動プロセスの最大数を指定する	pjsubmpi proc
生成するプロセスのランク割付けルールを指定する	pjsubmpi rank-map-bynode
	pjsubmpi rank-map-hostfile
	pjsubmpi rank-map-bychip

4.2.1 静的プロセスの形状指定

pjsub コマンド(--mpi shape)を使用することで、静的に起動するプロセスの形状を指定できます。 プロセスの形状は、1 次元、2 次元、3 次元の形状で --rsc-list (-L)の node パラメタで指定するノー ド形状と同じ次元数を指定する必要があります。--mpi オプションの shape パラメタが省略された場 合は、-L オプションで指定された node パラメタの値が使用されます。

shape パラメタ指定例

[1次元形状]	-mpi	"shape=X"
[2 次元形状]	-mpi	"shape=XxY"
[3 次元形状]	-mpi	"shape=XxYxZ"

例) 3 次元のプロセス形状(X 軸 2、Y 軸 3、Z 軸 2)を指定

```
[username@fx01:MPI] vi sample1.sh
#!/bin/sh
#----- pjsub option -----#
#PJM -L "rscgrp=fx-large" リソースグループ
#PJM --rsc-list "node=2x3x2:torus" ノード数(3次元形状)
#PJM -L "elapse=10:00" 経過時間
#PJM -j
#PJM -S
#----- program execution -----#
mpiexec ./a.out
```

4.2.2 静的プロセスの最大数指定

生成するプロセス数を指定するには、pjsub --mpi proc で指定します。

- (1) --mpi proc で指定可能なプロセス数は、(--mpi proc 指定値)×32 以下となります。
- (2) --mpi proc を省略した場合は、1 ノードに 1 プロセスを生成します。
- (3) フラット MPI で実行する場合は、本オプションを使用してプロセス数を指定します。
 FX100 にて4 ノードでフラット MPI を実行する場合は、--mpi proc=128 (4 ノード×32 プロセス)となります。

例)割当て最大プロセス数(128)を指定

4.2.3 MPI ランク割当

MPIでは、プロセス識別のために、プロセス番号に相当する「ランク」番号を割り当てます。 ランクの割り当てルールは、pjsub コマンドの 以下の--mpi オプションでユーザーが直接指定する ことも可能です。MPI ランクの割当て指定は3つ種類です。

オプション名	説明
rank-map-bynode	計算ノードに 1 プロセスを生成すると、次の計算ノードに移動し、ラウンドロビンで自動的
	に割り付けます。座標の原点をランク0とし、rank-map-bynodeの先頭文字の軸方
	向にランクを並べ、上限まで達した時点で、次の文字に移動します。
rank-map-bychip	計算ノードに n プロセスを生成すると、次の計算ノードに移動し、ラウンドロビンで自動的
(デフォルト指定)	に割り付けます。座標の原点をランク0とし、rank-map-bynodeの先頭文字の軸方
	向にランクを並べ、上限まで達した時点で、次の文字に移動します。
rank-map-hostfile	ランクマップファイルに指定された座標を基に、ランクを割り当てます。

表 4-3 MPI ランク割り当て方法

4.2.4 rank-map-bynode

rank-map-bynodeは、ジョブ割り当て時に先頭の計算ノードからラウンドロビンで自動的にランク割り当てが行われます。

例2) 2 次元形状の rank-map-bynode を指定する。

--mpi "rank-map-bynode=XY"

--mpi "rank-map-bynode=YX"

例3) 3 次元形状の rank-map-bynode を指定する。


```
[username@fx01:MPI] vi sample6.sh
#!/bin/sh
#----- pjsub option -----#
                                       リソースグループ指定
#PJM -L "rscgrp=fx-small"
#PJM -L "node=8:mesh"
                                        ノード数の指定(1次元形状)
                                        16 プロセスを起動
#PJM --mpi "proc=16"
#PJM --mpi "rank-map-bynode"
                                        静的プロセス形状
#PJM -L "elapse=10:00"
                                        経過時間指定
#PJM −j
#PJM −S
#----- program execution -----#
mpiexec ./a.out
```

4.2.5 rank-map-bychip

rank-map-chip は、計算ノードに指定した n プロセスを生成すると、次の計算ノードに移動しラウンドロビンで自動的にランクを割り付けます。座標の原点をランク 0 とし、rank-map-bychip の先頭文字の軸方向にランクを並べ、上限まで達した時点で、次の文字に移動します。

以下に rank-map-bychip の指定例を示します。

#PJMmpi	"rank-map-bychip[:{XY YX}]"	(2次元)
#PJMmpi	"rank-map-bychip[:{XYZ XZY YXZ YZX ZXY ZYX}]"	(3 次元)

例1)2次元形状のrank-map-bychipを指定し、ノード内に複数プロセスを起動する。

図 4-5 ランク割当例(ノード内複数プロセス(2次元形状))

```
    リソースグループ指定
    ノード数の指定(2次元形状)
    12プロセスを起動
    動的 MPI ランク割当て
    経過時間指定
```

4.2.6 rank-map-hostfile

rank-map-hostfile は、ユーザーが指示するホストマップファイルの座標をもとに、ランクを割り 当てます。

以下に rank-map-hostfile の指定例を示します。

```
[username@fx01:MPI] vi sample8.sh#!/bin/sh#----- pjsub option ------##PJM -L "rscgrp=fx-small"#PJM -L "node=2x2x2:mesh"#PJM -L "node=2x2x2:mesh"#PJM -L "lapse=10:00"#PJM -j#----- program execution -----#mpiexec ./a.out
```

- (1) ファイル rankmap は、pjsub コマンドを実行するカレントディレクトリに配置します。
- (2) ファイル rankmap 内のランク指定は、ノード形状に合わせて、1 次元、2 次元または 3 次元 座標で指定します。
- (3) ファイル rankmap には、1行に1座標を記述し、括弧で囲んで指定します。
- 例1)1次元形状の rank-map-hostfile を指定、ファイル rankmap に配置を記載。

1次元座標を指定する場合、ホストマップファイルは(X)を指定します

[username@fx01:MPI] vi rankmap1 # ホストマップファイル(1 次元指定例)	
(0)	#rank0
(1)	#rank1
(2)	#rank2
(3)	#rank3
(7)	#rank4
(6)	#rank5
(5)	#rank6
(4)	#rank7

例2) 2 次元形状の rank-map-hostfile を指定、ファイル rankmap に配置を記載。

図 4-7 ランク割当例(ホストマップファイル/2 次元形状)

[<i>username</i> @fx01:MPI] vi sample10.sh	
#!/bin/sh	
# pjsub option#	
#PJM -L "rscgrp=fx-small"	リソースグループ指定
#PJM <u>-L</u> "node=4x2:mesh"	ノード数の指定(2 次元形状)
<pre>#PJMmpi "rank-map-hostfile=rankmap2"</pre>	動的 MPI ランク割当て
#PJM -L "elapse=10:00"	経過時間指定
#PJM −j	
#PJM −S	
# program execution#	
mpiexec ./a.out	

2次元座標を指定する場合、ホストマップファイルは(X,Y)を指定します。

[<i>username</i> @fx01:MPI] vi rankmap2 # ホストマップファイル(2次元指定例)	
(0,0)	#rank0
(1,0)	#rank1
(2,0)	#rank2
(3,0)	#rank3
(3,1)	#rank4
(2,1)	#rank5
(1,1)	#rank6
(0,1)	#rank7

例3)3 次元形状の rank-map-hostfile を指定、ファイル rankmap に配置を記載。

図 4-8 ランク割当例(ホストマップファイル/3次元形状)

[<i>username</i> @fx01:MPI] vi sample11.sh		
#!/bin/sh		
# pjsub option#		
#PJM -L "rscgrp=fx-small"	リソースグループ指定	
#PJM <u>-L</u> "node=2x2x2:mesh"	ノード数の指定(3 次元形状)	
<pre>#PJMmpi "rank-map-hostfile=rankmap3"</pre>	動的 MPI ランク割当て	
#PJM -L "elapse=10:00"	経過時間指定	
#₽JM −j		
#PJM −S		
# program execution#		
mpiexec ./a.out		

3次元座標を指定する場合、ホストマップファイルは(X,Y,Z)を指定します。

[username@fx01:MPI] vi rankmap3	
# ホストマップファイル(3 次元指定例)	
(0,0,0)	#rank0
(1,0,0)	#rank1
(0,1,0)	#rank2
(1,1,0)	#rank3
(0,0,1)	#rank4
(0,1,1)	#rank5
(1,0,1)	#rank6
(1,1,1)	#rank7

ランクマップファイル割当て(rank-map-hostfile)と起動プロセス数の指定を組み合わせることで、 ノード内に複数プロセスを割り当てる事も可能です。

例4) 2 次元形状の rank-map-hostfile を指定し、ノード内に複数ランクを指定する。

У

図 4-9 ランク割当例(ホストマップファイル/2 次元形状)

```
[username@fx01:MPI] vi sample12.sh
#!/bin/sh
#----- pjsub option -----#
                                       リソースグループ指定
#PJM -L "rscgrp=fx-small"
#PJM -L "node=2x2:mesh"
                                       ノード数の指定(2次元形状)
                                       プロセス数指定
#PJM --mpi "proc=8"
#PJM --mpi "rank-map-hostfile=rankmap4"
                                       動的 MPI ランク割当て
#PJM -L "elapse=10:00"
                                       経過時間指定
#PJM −j
#PJM −S
#----- program execution -----#
mpiexec ./a.out
```

[*username*@fx01:MPI] vi rankmap4 # ホストマップファイル(2次元指定例) (0,0) (1,0) (0,1) (1,1)

rank-map-hostfile と rank-map-bychip を同時に指定することで、ホストマップファイルで指定される座標(1行)に、rank-map-bychip で指定された数のプロセスを割り当てることも可能です。

例5) 2 次元形状の rank-map-hostfile を指定し、rakn-map-bychip を同時に指定する

図 4-10 ランク割当例 (ホストマップファイル/2 次元形状)

[username@fx01:MPI] vi sample13.sh		
#!/bin/sh		
# pjsub option#		
#PJM -L "rscgrp=fx-small"	リソースグループ指定	
#PJM -L "node=2x2:mesh"	ノード数の指定(2 次元形状)	
#PJM <u>mpi "proc=8"</u>	プロセス数指定	
<pre>#PJMmpi "rank-map-hostfile=rankmap5"</pre>	動的 MPI ランク割当て	
#PJMmpi "rank-map-bychip:XY"	動的 MPI ランク割当て	
#PJM -L "elapse=10:00"	経過時間指定	
#₽JM −j		
#PJM −S		
# program execution#		
mpiexec ./a.out		

起動するランク配置(2次元)をホストマップファイルに記載します。

[<i>username</i> @fx01:MPI] vi rankmap5		
# ホストマップファイル(2 次元指定例)		
(0,0)	#rank	0,1
(0,1)	#rank	2,3
(1,1)	#rank	4,5
(1,0)	#rank	6,7

4.2.7 ホストマップファイル利用時の注意事項

ホストマップファイルについて注意事項を示します。

- (1) ファイル中の空行は、無視されます。
- (2) ファイル中の有効な座標の行数が、--mpi proc (rank-map-bychip の場合は、proc÷n)で指定 した値よりも多い場合、残りの行は無視されます。
- (3) ファイル中の有効な座標の行数が、--mpi proc (rank-map-bychip の場合は、proc÷n)で指定 した値よりも少ない場合、最後の行まで割り当てたら、先頭行に戻って割り当てます。
- (4) ホストマップファイル中にノード座標を記述する場合は、各ノードに割り当てるプロセス数を 均等にする必要があります。例えば、4ノードで7プロセスを実行する場合、4-1-1-1のプロセ ス数配置を指定してもジョブの実行はできません。2-2-2-1のように、プロセス数を均等にす るように記述してください。

4.2.8 ジョブ形状(トーラス)

pjsub -L node で指定された形状(1 次元/2 次元/3 次元)、計算ノード数に応じて、ジョブに資源が割り当てられます。割り当てられた資源は、各軸単位にジョブ内でトーラスが構成されます。

4.2.9 複合 MPI オプション指定(MPI 関連)

MPI プログラムを実行するには、pjsub のオプションを適切に指定する必要があります。

1次元の指定例を示します。

【ジョブスクリプト】

<pre>[username@fx01:MPI]\$ vi sample14.sh #!/bin/sh # pjsub option# #PJM -L "rscgrp=fx-large" #PJM -L "node=24:torus" #PJMmpi "proc=12" #PJM -L "elapse=10:00" #PJM -j</pre>	リソースグループ指定 ノード数の指定(1次元形状) 最大プロセス形状指定 経過時間指定
# program execution# mpiexec -n 12 ./a.out	並列プロセス数 12 で a.out を実行

上記の-L node で要求した形状/計算ノード数が確保されます。1 次元形状(24)が指定されているため、 利用するプロセスが 12 であっても、1 次元で 24 計算ノードが確保されます。

5. プログラミング支援ツール

本ツールは、アプリケーションプログラム開発の各種作業フェーズを支援する GUI 開発環境で す。独自のファイルエクスプローラやエディタをはじめ、デバッガ、プロファイラなど高機能の開発 ツールを実装しています。プログラミング支援ツールの主要な特徴を「表 5-1 プログラミング支援ツ ールの機能概要」に示します。利用方法の詳細は、「プログラミング支援ツールマニュアル」「デバッ ガ使用手引書」「プロファイラ使用手引書」を参照してください。

機能	内容
マネージャ機能	各機能の起動、各種メッセージの表示、サーバへのコマンドの投入機能など
	を行うメイン画面
プログラム作成支援機能	ファイルの作成/操作を行うファイルエクスプローラ、ファイル内容表示/編集
	のエディタ
アプリケーションビルド支援機能	Makefile ファイルの作成/実行を行うビルダ
アプリケーション実行支援機能	実行スクリプトの作成/実行を行うエグゼキュータ
デバッグ機能	Fortran77/90、C、C++コンパイラで作成された逐次アプリケーション、並
	列アプリケーション(スレッド並列、MPI)に対して使用可能な GUI デバッギン
	グツール
	・アプリケーションの実行制御(実行中断、再開、ステップ・ネクスト実行)
	・アプリケーションのブレークポイントの設定、解除
	・アプリケーションのウォッチポイントの設定、解除
	・アプリケーションのバリアポイントの設定、解除(スレッド並列)
	・変数値の表示、変更、変数値の自動表示設定などの変数操作
	・スタックフレーム(呼び出し経緯)の表示とフレームの変更
プロファイリング機能	アプリケーションの実行性能情報を収集/解析するプロファイラ
	・基本プロファイラ
	サンプリングによりプログラム全体のチューニング情報(コスト)を収集
	- 経過時間、ユーザーCPU時間、システム CPU時間の内訳など
	- サンプリングに基づくコスト、同期待ちコスト、MPI ライブラリ通信コスト
	- アプリケーション実行時のプロセッサ動作状況
	- 手続きの呼出し経路とコスト
	- ソースコードの各行にコスト情報を付加して出力
	・詳細プロファイラ
	カウンタにより、プログラムの測定区間のチューニング情報を収集
	- 測定区間の呼び出し回数、経過時間、CPU 時間の内訳など
	- 測定区間の MPI ライブラリの実行情報
	- 測定区間のハードウェアモニタ情報
トレーサ機能	MPI 関数トレース情報を収集/解析する機能

表 5-1 プログラミング支援ツールの機能概要

5.1 プログラミング支援ツールインストール

(1) 下記 URL にアクセスします。FX100 と CX とでツールが異なりますので、それぞれダウンロードをお願いします。
 ※過去バージョンをインストール済みの場合でも新規インストールが必要です。
 [FX100]
 https://fx.cc.nagoya-u.ac.jp/fsdtfx100/install/index.html
 [CX]

https://cx.cc.nagoya-u.ac.jp/fsdtpcc/install/index.html

(2) プログラミング支援ツールをインストールします。

	1. [Download Now] &
FUJITSU Software Development Tools	クリックして、ダウンロー
FUJISU Software Development Tools Version 1.2.0 20250-20250	ドを開始する。

. . .

図 5-1 プログラミング支援ツールダウンロードサイト画面

ダウンロードサイトにインストール手順が記載されています。手順に従い、インストールを行って ください。

5.2 ツール起動方法

- 1. [server] に Login _ 🗆 🗙 fx.cc.nagoya-u.ac.jp を入力しま Server す。 Name 2. [Name] にユーザーアカウントを Password 入力します。 3. [Password]にパスワードを入力しま Save login information す。 Ok Cancel OK をクリックします。 4.
- (1) FUJITSU Software Development Tools を起動します。(以下は FX100 の例です)

図 5-2 プログラミング支援ツールログイン画面

(2) ツールのメニュー画面が起動します。

アイコンをクリックすると
各サービスが起動します。
(1)File explorer: ファイル操作
(2)Editor: ファイル編集
(3)Bulider: コンパイル/リンク
(4)Executer: ジョブ実行
(5)Debugger: デバッガ
(6)Profiler: プロファイラ

図 5-3 プログラミング支援ツールメニュー画面

5.3 ツール終了

メニュー画面上部の「x」ボタンをクリックすると、終了確認画面が表示されます。

図 5-4 プログラミング支援ツールメニュー画面

5.4 デバッガの利用

デバッガの制御下でアプリケーションを実行し、処理論理の検証などを行うことができます。 富士通コンパイラで作成した Fortran, C/C++ 言語の逐次アプリケーション、MPI アプリケーショ ンおよび XPFortran アプリケーションに対して、次の操作が可能です。

- アプリケーションの実行制御
- アプリケーションの実行停止位置の設定
- 式および変数についての評価と表示
- 呼出しスタックの表示とフレームの変更

5.4.1 デバッガ利用の準備

デバッグするアプリケーションを翻訳する際に、-g -Ntl_trt の 2 つの翻訳時オプションを指定 し、再コンパイルしてください。

※名古屋大学の環境ではデフォルトで設定されているため、明に指定する必要はありません。

[username@fx01:~] frtpx _g -Ntl_trt sample.f

表 5-2 デバッグオプション一覧

オプション	説明
Ēa	デバッグ情報の生成を指示するオプションです。本オプションが指定されていないと、デバッグ
デ	中に変数の値を参照することや、ソースプログラムと対応を取ることができません。
-Ntl_trt	ツールランタイムライブラリを結合するオプションです。本オプションを指定すると、アプリケーショ
K	ンの実行時にデバッグ機能、プロファイリング機能および MPI トレース機能を使用できます。

5.4.2 デバッガ利用方法(GUI)

利用支援ツールに含まれる GUI デバッガは、以下の3種類のデバッグが可能です。

- 通常デバッグ
 デバッガからジョブ投入し、プログラムの先頭から実行してデバッグする方法です。デバッグ
 中に、プログラムの式や変数の表示・実行制御・実行停止位置の設定などができます。
- コアファイルデバッグ
 ジョブが異常終了した場合に出力されるコアファイルを使用し、異常終了時の状態を静的に検 証するデバッグです。
- ジョブ ID アタッチデバッグ
 実行中のジョブ ID を指定してジョブの全てのプロセスを補足します。

本手引書では通常デバッグの起動手順を説明します。デバッガの詳細な利用方法は「デバッガ使用 手引書」を参照してください。

- プログラミングコンパイル デバッグする実行モジュールは必ずデバッグオプション "-g -Ntl_trt"を付与してコンパイル/ リンクしてください。
- (2) デバッグジョブスクリプトの準備

実行モジュールを作成するデバッグ投入用ジョブスクリプトを作成します。 デバッグ投入用ジョブスクリプトは、あらかじめデバッグ用にコンパイルした実行モジュール を指定する必要があります。

```
[username@fx01:SSL2] vi sample21_dbg.sh
#!/bin/sh
#----- pjsub option ------#
#PJM -L "rscgrp=fx-small"
#PJM -L "node=1:mesh"
#PJM -L "elapse=10:00"
#PJM -j
#PJM -j
#PJM -s
#----- program execution -----#
mpiexec ./dbg.out
```

(3) デバッガツールを起動します。

[Debugger]メニューをクリック

図 5-5 デバッガ起動

(4) デバッグ用ジョブスクリプトを選択し、投入します。

tart setting			- □ >	¢	
Corefile debug	Job ID attach debug]			
cify the script file and	job submit command.				ファイル選択ボタンを
/hom	ne/xxxx√go.sh				クリック
t command : pjsut	-Xinteract				
✓ Ir	teractive job option				
Π Τ	hread enable option				
			Ok Cancel		
	ttart setting Corefile debug ify the script file and i t command : i i i i i i i i i i i i i i i i i i i	tart setting Corefile debug Job ID attach debug Sify the script file and job submit command. if home/x00xd/go.sh t command : pisub -Xinteract Interactive job option Thread enable option	tart setting Corefile debug Job ID attach debug Sify the script file and job submit command. if the script file and job submit file and job submit command. if the script file and job submit file	ttart setting ↓ Corefile debug Job ID attach debug Sify the script file and job submit command. //home/xoocd/go.sh t command : pigub -Xinteract ✓ Interactive job option	ttart setting X

投入するスクリプトファイルを選択 [Open]をクリック

図 5-6 デバッグ用スクリプトファイルの投入

(5) デバッグ開始

ジョブ開始後、デバッグ操作を行います。

図 5-7 デバッガ画面

5.4.3 ブレークポイント、ウォッチポイント設定

デバッガではプログラムの任意の場所で実行を停止する機能を持っています。停止位置での停止後、

変数の値を表示するなど、プログラムが意図した動作をしているか確認できます。

また、停止位置は通常、デバッグ作業中は有効ですが、停止しないよう、一時的に無効にできます。 停止位置には次の種類があります。

• ブレークポイント

プログラムのデバッグ中に意図的に一時停止させる箇所をブレークポイントといいます。 MPIプログラムでは、プログラムの全プロセスに同じブレークポイントを設定した場合、個々 のプロセスがブレークポイントに到達した時点で、プロセスの実行が一時停止します。 一方、スレッドを含むプロセスに対するブレークポイントを設定した場合は、いずれかのスレ ッドがブレークポイントに達した時点で、プロセス内の各スレッドは実行を一時停止します。 一度停止すると解除される「一時ブレークポイント」もあります。

• バリアポイント

バリアポイントは、スレッドを含むプロセスに対してのみ有効な停止位置です。

プロセス中のすべてのスレッドがバリアポイントに到達した時点で、実行を一時停止します。す べてのスレッドがバリアポイントに到達するまで、そのプロセスに対するデバッガの操作は行えま せん。

● ウォッチポイント

特定の変数に着目し、変数にアクセス(参照、変更、参照と変更)された時点でプログラムの実 行を一時停止させる設定をウォッチポイントといいます。

なお、ウォッチポイントは変数アクセスを監視できる強力な機能ですが、利用するとメモリアク セスを監視するため、通常の実行よりも実行性能が悪くなりますので注意が必要です。

6. チューニング

6.1 チューニング概要

プログラムの実行がより短時間で終了するように、プログラムを改善することをチューニングと呼びます。プログラムをチューニングするには、チューニング情報の収集、性能評価・分析、プログラムの修正と性能測定などの一連の作業を実施します。

ー般に、プログラムの中で、多くの実行時間が費やされている箇所を見つけ出して、その部分を高 速化すると、大きなチューニング効果を得ることができます。

- プログラム内で実行時間計測サブルーチンの呼び出し
- バッチジョブ統計情報取得オプションの指定

プロファイラの指定

図 6-1 チューニング手順概要

6.2 プロファイラ

富士通製コンパイラでコンパイル/リンクを行った実行モジュールは、プロファイラ機能を利用す るために必要なツールライブラリがデフォルトでリンクされます。これらのライブラリを用いて、実 行モジュールの性能をプロファイリング可能です。プロファイラは、データ採取の方法の違いによ り、基本プロファイラと詳細プロファイラの2種類があります。

本項では以下のプロファイラに関する利用方法を説明します。「プロファイラ使用手引書」も併せ てご参照ください。

種別	収集	表示	説明
基本プロファイラ	fipp -C	fipppx	ユーザープログラムに対し一定間隔(デフォルト時 100 ミリ秒間隔)
		GUI	毎に割り込みをかけ情報を収集します。収集した情報を基に、時

表 6-1 基本/詳細プロファイラ

			間統計情報、コスト情報、等の分析結果を表示します。
詳細プロファイラ	fapp -C	fapppx	アプリケーションの指定した区間の実行性能情報の収集および出
		GUI	カを行うことができます。収集した情報を基に、測定区間の呼出し
			回数、経過時間、ユーザ CPU 時間、およびシステム CPU 時間の
			内訳、MPI ライブラリ実行情報等の詳細な分析結果を表示しま
			す。

6.2.1 基本プロファイラ

基本プロファイラは、サンプリングによる情報収集に基づいたコスト分析をします。

図 6-2 基本プロファイラ概要

6.2.1.1 プロファイリングデータ収集

fipp-Cコマンドを使用して、プログラムのサンプリングデータを収集します。

fipp -C -d <dir></dir>	[option] ./a.out	(逐次/スレッドジョブ)
fipp -C -d <dir></dir>	[option] mpiexec	./aout (MPIジョブ)

表 6-2 主要オプション(fipp コマンド)

オフ	プション	意味					
-C		基本プロファイリングデータの収集処理を行うことを指定					
-1	din data	サンプリングデータの保存先ディレクトリ名を指定					
-α	dir_data	(実行前に指定したディレクトリは内容が空でなければならない)					
- I		収集する基本プロファイラ情報の項目を指定					
		コールグラフ情報収集を指定					
	call nocall	[call:収集する nocall:収集しない(default)]					
	hum nohum	ハードウェアモニタ情報収集を指定					
		[hwm: 収集する nohwm:収集しない(default)]					
	<intomal></intomal>	サンプリング間隔(単位:ミリ秒)を指定する。デフォルト値は-i 100					
- T	<iiilei vai=""></iiilei>	interval : 整数値(ミリ秒単位) 指定可能範囲 1~3,600,000					
-H		ハードウェアモニタ情報の測定を指示します。					
		測定モードを指定					
	mode={sys usr}	sys: カーネルモードおよびユーザーモードの情報収集を指定					
		usr: ユーザーモードの情報収集を指定					

6.2.1.2 プロファイリングデータ参照

FX100 ログインノードで、fipppx コマンドを使用して、収集したプロファイリングデータを CUI 形式で表示します。

CX ログインノードでは、fipp コマンドになります。

\$ fipppx -A -d <dir> [option]

オフ	プション	意味						
-A		基本プロファイラ情報の出力処理を指定						
		基本プロファイリングデータ名(基本プロファイリングデータファイルを格納するデ						
		ィレクトリ名)を、相対パス、または絶対パスで指定します。						
-1		dir_dataに"-"で始まる基本プロファイリングデータ名を指定する場合は、						
-a	dir_data	絶対パス、またはカレントディレクトリ("./")を含む相対パスで指定してくだ						
		さい。本オプションを、fipp コマンドのオプション並びの最後に指定する場合						
		は、-d を省略することができます。						
- I	_	出力する項目を指定						
		コスト情報出力を指定						
	cpu nocpu	[cpu:出力する nocpu:出力しない](default)						
	belen se n ebelen se	並列実行単位間のコストバランス出力を指定						
	palance nopalance	[balance:出力する nobalance:出力しない(default)]						
	apl1/mogp11	コールグラフ情報出力を指定						
		[call:出力する nocall:出力しない(default)]						
	by m by m	ハードウェアモニタ情報の出力を指定						
	11wm 11wm	[hwm:出力する nohwm:出力しない(default)]						
	<pre>src[:path]</pre>	ソースコード情報を出力するかどうかを指定						
	nosrc	[src[:path]:出力する nosrc:出力しない(default)]						
-0	<outfile></outfile>	出力するファイル名を指定(default: -ostdout)						
-p	p_no	基本プロファイラ情報の入出力対象プロセス(p_no)を指定						
	N[,N]	N[,N]: スレッド番号 N の情報を出力						
	all	all: 全スレッド情報を出力						
	limit=n	limit=n: 指定したスレッド番号、高コストの上位順にℕ件の情報を出力						

表 6-3 主要オプション(fipppx コマンド)

6.2.1.3 カウンタ測定範囲の指定

基本プロファイラは、全プログラムのコスト情報を測定しますが、特定の区間を指定して測定する 場合には、コストを測定する開始位置と終了位置にサブルーチンを挿入します。

言語種別	ヘッダファイル	機能	引数*1	
Fortran	t-1	fipp_start	コスト情報測定開始	なし
	<i>a</i> 0	fipp_stop	コスト情報測定終了	なし
C/C++		void fipp_start	コスト情報測定開始	なし
	IJ_COOI/IIpp.n	void fipp_stop	コスト情報測定終了	なし

表 6-4 測定開始/終了指定関数

6.2.1.4 測定方法

(1) コンパイル/リンク

プロファイラに必要なライブラリを結合するため、以下の方法でコンパイル/リンクします。測定区 間を指定したい場合は、「6.2.1.3 カウンタ測定範囲の指定」を参照してください。

※名古屋大学の環境ではデフォルトで設定されているため、明に指定する必要はありません。

```
[username@fx01:~] fccpx -Ntl_trt test.c
[username@fx01:~]
```

(2) 測定/収集

fipp コマンドを実行するスクリプトファイルの例を示します。ジョブ終了時、指定ディレクトリ (testdir)に結果が出力されます。

[username@fx01:Fortran] vi sample22_prof.sh #!/bin/bash -x #----- pjsub option ------# #PJM -L "rscgrp=fx-small" #PJM -L "node=1:mesh" #PJM -L "elapse=10:00" #----- program execution -----# fipp -C -d prof ./a.out [username@fx01:~] pjsub sample22_prof.sh [INFO] PJM 0000 pjsub Job 750 submitted.

6.2.1.5 結果確認(CUI)

FXの場合、fipppxコマンド実行時に、取得したディレクトリを指定して基本プロファイラを起動します。CXの場合、fipp-Aコマンドで基本プロファイリングデータのテキスト出力を行います。

[username@fx01:~] fipppx -A -d prof -----Fujitsu Instant Profiler Version 1.2.0 Measured time : Fri Jun 22 15:51:09 2013 CPU frequency : Process 0 1650 (MHz) : SERIAL Type of program Average at sampling interval : 100.0 (ms) Measured range : All ranges _____ _____ Time statistics User(s) System(s) Elapsed(s) -----0.0000 0.0027 0.0000 Application _____ 0.0027 0.0000 0.0000 Process 0

6.2.1.6 結果確認(GUI)

プログラミング支援ツールを使って、GUI で基本プロファイラを起動可能です。基本プロファイラ では測定結果の可視化が可能です。プログラミング支援ツールの起動方法は「5.2 ツール起動方法」 を参照してください。

また、基本プロファイラ GUI ツールの利用詳細は「プロファイラ使用手引書 2.3 章 基本プロファ イラ情報」を参照してください。 以下にプロファイラの起動方法を示します。

プロファイラを起動します。
 「「「「」」」」」
 「Profiler]メニューをクリック
 FUJITSU Software Development rools FUffrsu

図 6-3 プロファイラ起動

(2) プロファイラデータの格納ディレクトリを指定します。

図 6-4 プロファイラディレクトリ選択

(3) プロファイラが起動し、操作が可能となります。

6.2.2 詳細プロファイラ

詳細プロファイラは、CPUのPAカウンタの値を計測し、詳細なプログラムの動作を分析します。 fapp コマンドにより収集したプロファイリングデータを、専用のGUIツールで表示し、分析しま す。

図 6-6 詳細プロファイラ概要

6.2.2.1 プロファイリングデータ収集

fapp コマンドを使用して、プログラムの詳細プロファイリングデータを収集します。

<u>fapp -C -d <dir></u> [option] ./a.out (逐次/スレッドジョブ) <u>fapp -C -d <dir></u> [option] mpiexec ./a.out (MPIジョブ)

表 6-5 主要オプション(fapp コマンド)

オフ	パション	意味				
-C		詳細プロファイリングデータの収集処理を行うことを指定				
		サンプリングデータの保存先ディレクトリ名を指定				
-d	dir_data	(ディレクトリが存在しない場合は新規に作成されます。ディレクトリが存在す				
		る場合は、内容が空でなければなりません)				
-I item		サンプリングで測定する項目を指定				
		MPI 情報を収集するかどうかを指定				
		・mpi : MPI 情報を収集				
		・nompi : MPI 情報を収集しない				
	mpi nompi	逐次プログラムの場合、mpi は指定できません。				
		本オプションの省略値は、次のとおりです。				
		・MPI アプリケーションの場合 : mpi				
		・逐次アプリケーションの場合 : nompi				

	hum nohum	ハードウェアモニタ情報収集を指定					
		[hwm:収集する nohwm:収集しない(default)]					
-H	item	サンプリングで測定する項目を指定					
		測定イベントを指定					
	event= { AVX \mid	•AVX : CPU core 動作状況 (AVX 命令)					
	Cache TLB	•Cache : キャッシュミス率					
	Statistics }	・TLB : TLB ミス率					
		•Statistics: CPU core 動作状況 (default)					
		測定モードを指定					
	modo-{avaluar}	sys: カーネルモードおよびユーザーモードの情 報 収 集を指 定					
		(default)					
		usr: ユーザーモードの情報収集を指定					

6.2.2.2 測定範囲の指定

詳細プロファイラで測定するためには、測定する範囲を指定する必要があります。 測定範囲を指定する関数を示します。

表 6-6 測定開始/終了指定関数

言語種別	ヘッダファイル	関数名	機能	引数*1
Fortran	t-1	fapp_start	情報測定開始	name,number,level
FOLLIAN	14 U	fapp_stop	情報測定終了	name,number,level
C/C++		woid fapp start	唐 忠 測 宁 問 始	const char *name, int
	fi tool (farr h	Void Tapp_Start	1月刊(201)(上)(月)50	number, int level
		wold fapp stop	桂把测宁效了	const char *name, int
		YOIG TAPP_SCOP	旧刊初月上於」	number, int level

6.2.2.3 プロファイラ測定

詳細プロファイラの利用手順を示します。

(1) 測定範囲指定
 プログラムに測定範囲を指定します。

【サンプルプログラム】

(2) コンパイル/リンク

詳細プロファイラ機能に必要なツールライブラリを結合するために、以下のようにコンパイル/リンクします。

<u>※名古屋大学の環境ではデフォルトで設定されているため、明に指定する必要はありません。</u> [username@fx01:~] fccpx -Ntl_trt test.c

(3) 測定/収集

プログラムのカウンタデータを収集する場合は、fapp コマンドを使用します。

[username@fx01:Fortran] vi prof.sh #!/bin/bash -x #----- pjsub option ------# #PJM -L "rscgrp=fx-small" #PJM -L "node=1:mesh" #PJM -L "elapse=10:00" #----- program execution -----# fapp -C -d prof2 ./a.out [username@fx01:~] pjsub sample23_prof.sh [INFO] PJM 0000 pjsub Job 753 submitted.

6.2.2.4 結果確認(CUI)/プロファイリングデータ参照

FX100 ログインノードで、fapppx コマンドを使用して収集したプロファイリングデータを CUI 形式で表示します。CX ログインノードでは、fapp コマンドを使用して収集しますが、CUI で表示できません。GUI での表示方法は、6.2.2.5 結果確認(GUI)をご参照ください。(2017.01.20 追加修正)

\$ fipppx -A -d <dir> [option]

[<i>username</i> @fx01:Fortran] \$ fapppx -A -d prof2										
Fujitsu Ad Measure CPU fre Type of	lvanced Perform d time quency program	ance Profil : Mon : Pro : Thr	er Version 1 Sep 23 18:36 cess 0 1 cead (OpenMP)	.2.0 5:46 2013 848 (MHz) 16						
Basic profile ***********************************										
Kind	Elapsed(s)	User(s)	System(s)	Call						
AVG MAX MIN	0.1862 0.1862 0.1862	2.0500 2.0500 2.0500	0.0600 0.0600 0.0600	1.0000 1 1	all O					
********* Pro ******	**************************************									
	Elapsed(s)	User(s)	System(s)	Call						
	0.1862	2.0500	0.0600	1	all 0					

6.2.2.5 結果確認(GUI)

詳細プロファイラは、プログラミング支援ツールを使って起動します。詳細プロファイラでは測定 結果の可視化が可能です。プログラミング支援ツールの起動方法は「5.2 ツール起動方法」を参照し てください。また、詳細プロファイラGUIツールの利用詳細は、「プロファイラ使用手引書 3.3章 詳 細プロファイラ情報」を参照してください。

(1) プロファイラを起動します。

図 6-7 プロファイラ起動

(2) プロファイラデータの格納ディレクトリを指定します。

図 6-8 プロファイラディレクトリ選択

(3) プロファイラが起動し、操作が可能となります。

Braciss public Republicy Bar Data Data Geogram	as model Assi New J. Assi Seegens				And the Andrew State Store	-	-						-			
all - I - Call Speed			TRANS. MILL				Walter Descention		53	-92						
	Rom Rom Gal Guar Unpert (H Unpert (H Rydner (H)	1000 10 10 10 10 10 10 10 10 10 10 10 10	4	Partie	400. 1 1.10000	Konal KAN		Tana Tan Tan Danse (1) Danse (2)	e e e e e e e e e e e e e e e e e e e	See all	HEAL IS and	and the second s	1.000		The section of	847 (8) 845. (1) 849.
< 2-4-4	•		(e) -	-							tert.	Tufr	ht	hi		

図 6-9 プロファイラ表示

7. ファイル転送

7.1 システムへのファイル転送(Windows環境)

Windows で使用できる SCP クライアントソフトには WinSCP などがあります。WinSCP は推奨 ターミナルソフトである PuTTY と同じ鍵を使用できるので、WinSCP を推奨 SCP クライアントソフ トとし接続方法を説明します。

WinSCP は以下のサイトからダウンロードすることができます。

WinSCP: http://winscp.net/eng/docs/lang:jp

7.1.1 鍵の作成

アクセス元端末(PC/WS)にて、秘密鍵/公開鍵ペアを作成します。

「1.7.1 鍵の作成」を参考に秘密鍵/公開鍵ペアを作成します。すでに鍵を作成済みの場合は、作業 を行う必要はありません。

7.1.2 公開鍵登録

公開鍵の登録は、HPC ポータル(https://portal.cc.nagoya-u.ac.jp/)を利用ください。

7.1.3 ファイル転送

図 7-1WinSCP 画面(1)

図 7-2WinSCP 画面(2)

7.2 システムへのファイル転送(Linux 環境)

7.2.1 鍵の作成

「1.8.1 鍵の作成」を参考に秘密鍵/公開鍵ペアを作成します。すでに鍵を作成済みの場合は、作業 を行う必要はありません。

7.2.2 ログイン

「1.8.2 ログイン」を参考にシステムヘログインします。

7.2.3 ファイル転送

■ファイル採取(クライアントから testfile1 を採取)						
[username@fx01 :~]\$ scp -P 22 username	e@[クライ フ	^ント名]:	/tmp/tes	tfile1 ./		
username@クライアント名's password: ****** (クライアントのパスワードを入力)						
testfile1	100%	32	0.0KB/s	00:00		
■ファイル配置(クライアントへ testfile2 を配置) [username@fx01 :~]\$ scp -P 22 ./testfi username@クライアント名's password: ****** (クライア) testfile2	ile2 us ントのパス「 100%	ername@ フードを入 32	^{0[} クライアント カ) 0.0KB/s	名]:/tmp 00:00		

8. **vSMP**

8.1 vSMP の利用方法

8.1.1 ログイン

vSMP システムヘログインするには、ssh サービスを利用しvSMP ログインノードヘログイン後、 ログインノード経由で vSMP システムにログインします。

- (1) 指定されたログインユーザーを使用し、vSMP ログインノードのアドレス(133.6.1.150)に ssh 接続を行います。
- (2) vSMP ログインノードにログイン後、指定されたログインユーザーを使用し、vSMP システムのアドレスに ssh 接続を行います。

∨SMP 構成	vSMP システム	CPU 数	物理マエリの皇	中立くトニック
ノード	のアドレス	(コア数)	初年へてり各里	天知人しり谷里
12 ノード	10.30.0.4	24 (288)	1536GB	1075GB
	10.30.0.22	24 (288)	1536GB	1075GB

\$ ssh [ユーザー名]@[vSMP システムのアドレス]

(3) vSMP システムにログイン後、以下のコマンドで CPU・メモリの情報が確認できます。
 \$ vsmpversion --full

出力例:			
[root@cx7-00	1 ~]\$ vsmpversion	full	
vSMP Founda [.]	tion: 5.1.135.49 (A	Aug 29 2013 00:29:33)	
System configu	uration:		
Boards:	46	b0:00.0#1=>09:10.11.12.13.14.15.16	
		17.18	
		09-19-35:01.02.03.04.05	
		06.07.08.09.10	
		11.12.13.14.15	
		16.17.18	
		09-19-36:01.02.03.04.05	
		06.07.08.09.10	
		11.12.13.14.15	
		16.17.18	
Processors	s: 92, Cores: 110	4	
Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz Stepping 04			
Memory (MB): 5149197 (out of 6027564), Cache: 449311, Private: 429056			
Link Rate:	40Gb/s		
Boot devic	e: [HDDO] ATA W	DC WD5003ABYX-5	
License server	: 10.15.30.1:5053	3 (Serial number: 16922360) - Active	
[root@cx7-11	5 ~]\$		
1			

- (4) vSMP システムからログアウトする場合は、exit コマンドで vSMP ログインノードへ戻ります。
 \$ exit
- (5) vSMP ログインノードからログアウトする場合は、exit コマンドでログアウトします。 \$ exit

8.1.2 Technical Computing Language

Technical Computing Language は、Fortran、C 言語、C++、または並列プログラム言語 XPFortran による、高性能な並列アプリケーションプログラムの開発から実行までを支援するソフ トウェアです。

本項では、vSMP システムでの Technical Computing Language の利用方法(実行例)を示します。

8.1.2.1 Fortran

(1) サンプルプログラムをコピーします。
 \$ cd [作業用ディレクトリ]
 \$ mkdir Fortran
 \$ cd Fortran
 \$ cp /opt/FJSVpclang/1.2.0/sample/Fortran/* ./

```
(2) 環境変数 PATH、LD_LIBRARY_PATH の設定を行います。
```

- \$ PATH=/opt/FJSVpclang/1.2.0/bin:\$PATH
- \$ export PATH
- \$ LD_LIBRARY_PATH=/opt/FJSVpclang/1.2.0/lib64:/usr/lib64:\$LD_LIBRARY_P
- ATH

\$ export LD_LIBRARY_PATH

- (3) サンプルプログラムの翻訳と結合を行います。
 - \$ frt normal_end.f95

\$ ls -l

a.out が作成されていることを確認します。 -rwxr-xr-x 1 fj-lang fj-se 19213 8月 30 10:07 2013 a.out

(4) 実行

\$./a.out

以下のように出力されることを確認します。 1010 ″a″ ″x″ ″a″ ″x″ [″]Fujitsu Fortran system OK″

8.1.2.2 Cコンパイラ

(1) サンプルプログラムをコピーします。

```
$ cd [作業用ディレクトリ]
```

```
$ mkdir C
```

```
$ cd C
```

```
$ cp /opt/FJSVpclang/1.2.0/sample/C/sample.c ./.
```

```
(2) 環境変数 PATH、LD_LIBRARY_PATH の設定を行います。
```

- \$ PATH=/opt/FJSVpclang/1.2.0/bin:\$PATH
- \$ export PATH
- \$ LD_LIBRARY_PATH=/opt/FJSVpclang/1.2.0/lib64:/usr/lib64:\$LD_LIBRARY_P ATH

\$ export LD_LIBRARY_PATH

(3) サンプルプログラムの翻訳と結合を行います。

\$ fcc sample.c

\$ ls -1

a.out が作成されていることを確認します。 -rwxr-xr-x 1 fj-lang fj-se 16430 8月 30 10:15 2013 a.out

(4) 実行

\$./a.out

以下のように出力されることを確認します。 Fujitsu C Compiler: OK

8.1.2.3 C++コンパイラ

(1) サンプルプログラムをコピーします。

```
$ cd [作業用ディレクトリ]
$ mkdir C++
$ cd C++
$ cp /opt/FJSVpclang/1.2.0/sample/C++/sample.cc ./.
```

```
(2) 環境変数 PATH、LD_LIBRARY_PATH の設定を行います。
```

\$ PATH=/opt/FJSVpclang/1.2.0/bin:\$PATH

\$ export PATH

\$ LD_LIBRARY_PATH=/opt/FJSVpclang/1.2.0/lib64:/usr/lib64:\$LD_LIBRARY_P ATH

\$ export LD_LIBRARY_PATH

(3) サンプルプログラムの翻訳と結合を行います。

\$ FCC sample.cc

\$ ls -1

a.out が作成されていることを確認します。 -rwxr-xr-x 1 fj-lang fj-se 16430 8月 30 10:15 2013 a.out

(4) 実行

\$./a.out

以下のように出力されることを確認します。 Fujitsu C++ Compiler: OK
8.1.2.4 MPI

別紙ドキュメント

「vSMP 上で Technical Computing Language を使用する場合の注意事項について」の以下の項を参照しvSMP環境下での環境設定を行います。

■マニュアルについて ■使用上の注意

(1) サンプルプログラムをコピーします。

```
$ cd [作業用ディレクトリ]
$ mkdir MPI
$ cd MPI
$ cp /opt/FJSVpclang/1.2.0/sample/MPI/* ./.
```

(2) 環境変数 PATH、LD_LIBRARY_PATH の設定を行います。

\$ PATH=/opt/FJSVpclang/1.2.0/bin:\$PATH

\$ export PATH

\$ LD_LIBRARY_PATH=/opt/FJSVpclang/1.2.0/lib64:/usr/lib64:\$LD_LIBRARY_P

ATH

\$ export LD_LIBRARY_PATH

(3) スレッド数を指定します。

\$ OMP_NUM_THREADS=3\$ export OMP_NUM_THREADS\$ PARALLEL=3\$ export PARALLEL

- (4) 環境変数 OMPI_USE_ORTED に 1 文字以上の英数字を設定します。\$ OMPI_USE_ORTED=1\$ export OMPI_USE_ORTED
- (5) サンプルプログラムの翻訳と結合を行います

\$ taskset 5 ./compsample1.sh

\$ ls -1

sample1.out が作成されていることを確認します。 -rwxr-xr-x 1 fj-pa fj-se 18178 9月 13 08:48 2013 sample1.out

(6) 実行

\$ numactl --physcpubind=all mpiexec -n 64 ./sample1.out

以下のように出力されることを確認します。 MPI communication start. size=64 MPI communication end result is 0+1+...size-1.check result(2016)

8.1.2.5 XPFortran トランスレータ

(1) サンプルプログラムをコピーします。
 \$ cd [作業用ディレクトリ]

\$ mkdir XPFortran

\$ cd XPFortran

\$ cp /opt/FJSVpclang/1.2.0/sample/XPFortran/* ./.

(2) 環境変数 PATH、LD_LIBRARY_PATH の設定を行います。

\$ PATH=/opt/FJSVpclang/1.2.0/bin:\$PATH

\$ export PATH

\$ LD_LIBRARY_PATH=/opt/FJSVpclang/1.2.0/lib64:/usr/lib64:\$LD_LIBRARY_P

ATH

\$ export LD_LIBRARY_PATH

(3) サンプルプログラムの翻訳と結合を行います。

```
$./compxpf.sh
```

\$ ls -1

sampxpf.out が作成されていることを確認します。 -rwxr-xr-x 1 fj-pa fj-se 82910 9月 13 19:24 2013 sampxpf.out

(4) 環境変数 OMPI_USE_ORTED に 1 文字以上の英数字を設定します。

\$ OMPI_USE_ORTED=1 \$ export OMPI_USE_ORTED

(5) 実行

\$ mpiexec -n 4 ./sampxpf.out

以下のように出力されることを確認します。 *** XPFortran sample program *** result = 5050 5050 OK!

8.1.2.6 SSLI

```
(1) サンプルプログラムをコピーします。
$ cd [作業用ディレクトリ]
$ mkdir SSL2
$ cd SSL2
$ cp /opt/FJSVpclang/1.2.0/sample/SSL2/samps.f./.
$ cp /opt/FJSVpclang/1.2.0/sample/SSL2/comps.sh./.
```

```
(2) 環境変数 PATH、LD_LIBRARY_PATH の設定を行います。
```

```
$ PATH=/opt/FJSVpclang/1.2.0/bin:$PATH
```

\$ export PATH

```
$ LD_LIBRARY_PATH=/opt/FJSVpclang/1.2.0/lib64:/usr/lib64:$LD_LIBRARY_P
```

ATH

\$ export LD_LIBRARY_PATH

(3) サンプルプログラムの翻訳と結合を行います。

```
$./comps.sh
```

\$ ls -1

```
samps が作成されていることを確認します。
-rwxr-xr-x 1 fj-lang fj-se 86435 8月 30 10:26 2013 samps
```

(4) 実行

\$./samps

```
以下のように出力されることを確認します。
* ---- VPST2#DLAX ----
                           DATE 13-09-10
                                                 *
*
              ------ 中略 -------
100 0.2597E+00 1001
                   0 0.34E-15 0.0000E+00 1001 0 0.34E-15
OK
128 0.5495E+00 1001
                  0 0.30E-15 0.9990E-02 1001 0 0.30E-15
OK
150 0.8691E+00 1001
                   0 0,87E-15 0,1998E-01 1001
                                             0 0.87E-15
OK
200 0.2158E+01 1001 0 0.48E-15 0.2997E-01 1001 0 0.48E-15
OK
                         *** END OF TEST ***
```

8.1.2.7 C-SSLI

(1) サンプルプログラムをコピーします。
\$ cd [作業用ディレクトリ]
\$ mkdir CSSL2
\$ cd CSSL2
\$ cp /opt/FJSVpclang/1.2.0/sample/CSSL2/sampc.c./.
\$ cp /opt/FJSVpclang/1.2.0/sample/CSSL2/compc.sh./.
\$ cp /opt/FJSVpclang/1.2.0/sample/CSSL2/compc.p.sh./.

```
(2) 環境変数 PATH、LD_LIBRARY_PATH の設定を行います。
```

- \$ PATH=/opt/FJSVpclang/1.2.0/bin:\$PATH
- \$ export PATH
- \$ LD_LIBRARY_PATH=/opt/FJSVpclang/1.2.0/lib64:/usr/lib64:\$LD_LIBRARY_P
- ATH
 - \$ export LD_LIBRARY_PATH
- (3) サンプルプログラムの翻訳と結合を行います。
 - \$./compc.sh
 - \$./ compcpp.sh
 - \$ ls -l

```
sampc、sampcpp が作成されていることを確認します。
-rwxr-xr-x 1 fj-lang fj-se 1935767 8月 30 10:29 2013 sampc
-rwxr-xr-x 1 fj-lang fj-se 1939337 8月 30 10:29 2013 sampcpp
```

```
(4) 実行
```

\$./sampc

以7	以下のように出力されることを確認します。							
***	*****							
*					*			
*	c_dvlax				*			
-			中略					
	dimension	error	time(s) rem	ark				
	100	4.26e-15	0.000	OK				
	200	4.17e-15	0.000	OK				
	300	6.25e-15	0.000	OK				
	400	6.82e-15	0.010	OK				
	500	8.75e-15	0.010	OK				
			*** end of te	est ***				

\$./sampcpp

```
以下のように出力されることを確認します。
*****
*
                                          *
* --- c_dvlax ---
                                          *
                       --- 中略 ------
   dimension
              error
                      time(s) remark
                        0.000
     100
             4.26e-15
                                OK
     200
             4.17e-15
                        0.000
                                OK
     300
             6.25e-15
                        0.000
                                OK
     400
             6.82e-15
                        0.010
                                OK
     500
             8.75e-15
                        0.010
                                OK
                       *** end of test ***
```

8.1.2.8 SSL I/MPI

サンプルプログラムをコピーします。
 \$ cd [作業用ディレクトリ]
 \$ mkdir SSL2MPI
 \$ cd SSL2MPI
 \$ cp /opt/FJSVpclang/1.2.0/sample/SSL2MPI/samps.f ./.
 \$ cp /opt/FJSVpclang/1.2.0/sample/SSL2MPI/comps.sh ./.

(2) 環境変数 PATH、LD_LIBRARY_PATH の設定を行います。

\$PATH=/opt/FJSVpclang/1.2.0/bin:\$PATH

\$ export PATH

\$ LD_LIBRARY_PATH=/opt/FJSVpclang/1.2.0/lib64:/usr/lib64:\$LD_LIBRARY_P ATH

\$ export LD_LIBRARY_PATH

(3) サンプルプログラムの翻訳と結合を行います。

```
$./comps.sh
```

\$ ls -l

samps が作成されていることを確認します。 -rwxr-xr-x 1 fj-pa fj-se 3833061 9月 13 19:36 2013 samps

(4) スレッド数、サイズを指定します。

\$ OMP_NUM_THREADS=1 \$ export OMP_NUM_THREADS \$ THREAD_STACK_SIZE=64000\$ export THREAD_STACK_SIZE

(5) 環境変数 OMPI_USE_ORTED に1文字以上の英数字を設定します。
 \$ OMPI_USE_ORTED=1
 \$ export OMPI_USE_ORTED

(6) 実行

\$ mpiexec -n 4 ./samps

以下のように出力されることを確認します。							

* *							
* ds_v3dcft *							
* *							
* if sign of 'ok' is found in every 'remark' entry *							
* the above subroutine have been certified as correct *							
* *							

n1 n2 n3 error remark							
512 512 512 0.178D-14 ok							
*** end of test ***							

9. Intel コンパイラ・Xeon Phi 利用について

9.1 Intel コンパイラ

CX システムでは富士通コンパイラの他、Intel コンパイラが利用できます。

CX2550M1/CX270ともに利用可能です。CX2550システムはログインノードと計算ノードで異なる アーキテクチャですが、同じコンパイラが利用可能です。ただし、計算ノードの性能を最大限引き出 すため、かつ、ログインノードでコンパイルする場合、「-xCORE-AVX2」の指定が必要(効果はプロ グラムに依存)です。

表 9-1-1 コンパイラ環境(CX2550)

コンパイラ	ログインノード	計算ノード
Intel コンパイラ	O ^{*1}	0

※1 計算ノードの性能を最大限利用するには「-xCORE-AVX2」の指定が必要

表 9-1-2 コンパイラ環境(CX270)

コンパイラ	ログインノード	計算ノード
Intel コンパイラ	0	0

9.1.1 コンパイル/リンクの概要

コンパイル/リンクの書式とコマンドー覧は以下のとおりです。

コマンド [option] sourcefile [...]

表 9)-2 □	ンパイルノ	′リンクコ	マンド-	-覧
-----	-------	-------	-------	------	----

	言語処理系	コマンド名	OpenMP ^{注1}	AVX2 命令 ^{注 2}	
	Fortran90	ifort			
	С	icc		-xCORE_AVX2	
(JFMPI)	C++	icpc	ononmn		
사 도비	Fortran90	mpiifort	-opennip		
<u>业</u> タリ (MDT)	С	mpiicc			
(MPI)	C++	mpiicpc			

注 1: OpenMP オプションはデフォルトでは無効です。

注 2: AVX2 命令はデフォルトでは無効です。 ログインノードでコンパイルし、CX2550 に対してジョブ投入する場合計算ノード の性能を最大限利用するには指定が必要です。 ただし、-xCORE-AVX2 を指定する場合、他のオプションよりも後ろで指定して ください。他のオプションよりも前に指定した場合、-xCORE-AVX2 が無効になる

ことがあります。

また、コンパイラ環境は以下にインストールされています。

• /center/local/apl/cx/intel 配下

9.1.2 環境設定

ログイン直後は、富士通コンパイラの環境が設定されています。Intel コンパイラをご利用の前に、 Intel コンパイラの環境変数の設定が必要になります。

Intel コンパイラのバージョンは4種類 (Ver.2013, Ver.2015, Ver.2018, Ver.2019) あります。 標準は <u>Ver.2018</u>です。2019.06.14 更新

●Ver.2019 の場合 2019.06.14 更新

以下のコマンドを実行してください。実行後はログアウトされるまでは有効です。

詳細実行

\$ source /center/local/apl/cx/intel_2019/compilers_and_libraries_2019/linux/bin/compilervars.sh intel64

MPI プログラムをご利用の前には、以下のコマンドを実行してください。

Intel MPI 2019 Library を利用して MPI ノード間通信を行った際に、期待した速度が出ません。 CX400 システムは InfiniBand FDR(4xFDR 56Gbps) で接続されておりますが、1Gbps で頭打 ちとなります。原因、および回避方法について調査中です。 代替策として、 Intel MPI 2018 Library の ご利用をご検討ください。2019.06.14 更新 詳細実行

\$ source /center/local/apl/cx/intel_2019/compilers_and_libraries_2019/linux/mpi/intel64/bin/mpivars.sh

MKL をご利用の前には、以下のコマンドを実行してください。

詳細実行

\$ source /center/local/apl/cx/intel_2019/compilers_and_libraries_2019/linux/mkl/bin/mklvars.sh intel64

●Ver.2018 の場合 2019.04.02 更新

以下のコマンドを実行してください。実行後はログアウトされるまでは有効です。 詳細実行

\$ source /center/local/apl/cx/intel_2018/compilers_and_libraries_2018/linux/bin/compilervars.sh intel64

MPI プログラムをご利用の前には、以下のコマンドを実行してください。 詳細実行 \$ source /enter/local/apl/cx/intel_2018/compilers_and_libraries_2018/linux/mpi/intel64/bin/mpivars.sh

MKL をご利用の前には、以下のコマンドを実行してください。

詳細実行

\$source /center/local/apl/cx/intel_2018/compilers_and_libraries_2018/linux/mkl/bin/mklvars.sh intel64

●Ver.2015の場合(メーカサポート終了)

以下のコマンドを実行してください。実行後はログアウトされるまでは有効です。 詳細実行

\$ source /center/local/apl/cx/intel/composer_xe_2015/bin/compilervars.sh intel64

MPI プログラムをご利用の前には、以下のコマンドを実行してください。

詳細実行

\$ source /center/local/apl/cx/intel/impi/5.0.3.049/bin64/mpivars.sh

MKL をご利用の前には、以下のコマンドを実行してください。

詳細実行

\$ source /center/local/apl/cx/intel/composer_xe_2015/mkl/bin/mklvars.sh intel64

●Ver.2013 の場合 (メーカサポート終了)

以下のコマンドを実行してください。実行後はログアウトされるまでは有効です。 簡易実行

\$ intelset

詳細実行

\$ source /center/local/apl/cx/intel/composer_xe_2013_sp1/bin/compilervars.sh intel64

以下としても設定可能です。2016.04.21 更新

\$ source /center/local/apl/cx/intel/composerxe/bin/compilervars.sh intel64

MPI プログラムをご利用の前には、以下のコマンドを実行してください。

簡易実行

\$ intelmpi

詳細実行

```
$ source /center/local/apl/cx/intel/impi/4.1.1.036/bin64/mpivars.sh
```

MKL をご利用の前には、以下のコマンドを実行してください。

簡易実行

```
$ intelmkl
```

詳細実行

\$ source /center/local/apl/cx/intel/mkl/bin/mklvars.sh intel64

なお、サンプルプログラムは以下にあります。

(Fortran/C/C++) • /center/local/apl/cx/intel/composerxe/Samples/

- (MPI) /center/local/apl/cx/intel/impi/4.1.1.036/test/
- (MKL) /center/local/apl/cx/intel/mkl/examples

9.1.3 Fortran コンパイル/リンク/実行方法

Intel Fortran コンパイラは ifort コマンドを利用します。MPI ライブラリを使用する場合は、 mpiifort コマンドを利用します。

●コンパイル・リンク

例1) 逐次 Fortarn プログラムをコンパイル/リンクする。 ※/center/local/apl/cx/intel/composerxe/Samples/en_US/Fortran/optimize 配下の プログラムを利用。

\$ ifort int_sin.f90

例 2) ノード内スレッド並列(OpenMP)プログラムをコンパイル/リンクする。

※/center/local/apl/cx/intel/composerxe/Samples/en_US/Fortran/openmp_samples 配下 のプログラムを利用。

\$ ifort -openmp -fpp openmp_sample.f90

例 3) MPI 並列プログラムをコンパイル/リンクする。 ※/center/local/apl/cx/intel/impi/4.1.1.036/test/配下のプログラムを利用。

\$ mpiifort test.f90

●実行

- 例 1) TSS 実行(逐次、OpenMP) ※OpenMP 実行時、環境変数 OMP_NUM_THREADS にスレッド数を指定してください。
 - \$./a.out

例 2) TSS 実行(MPI)

\$ mpirun -n 4 ./a.out

例3) バッチ実行(逐次)

```
$ cat go_intel.sh
#!/bin/bash -x
#PJM -L "vnode=1"
#PJM -L "vnode-core=1"
#PJM -L "rscgrp=cx-small"
#PJM -j
#PJM -s
./a.out
```

例 4) バッチ実行(OpenMP)

```
$ cat go_intel_OMP.sh
#!/bin/bash -x
#PJM -L "vnode=1"
#PJM -L "vnode-core=14"
#PJM -L "rscgrp=cx-small"
#PJM -j
#PJM -j
#PJM -s
source /center/local/apl/cx/intel/composerxe/bin/compilervars.sh intel64
OMP_NUM_THREADS=8; export OMP_NUM_THREADS
THREAD_STACK_SIZE=8192; export THREAD_STACK_SIZE
./a.out
```

例5) バッチ実行(MPI)

9.1.6 MPI 実行方法をご参照ください。

9.1.4 C コンパイル/リンク/実行方法

Intel C コンパイラは icc コマンドを利用します。MPI ライブラリを使用する場合は、mpiicc コマンドを利用します。

●コンパイル・リンク

例 1) 逐次 C プログラムをコンパイル/リンクする。

※/center/local/apl/cx/intel/composerxe/Samples/en_US/C++/optimize 配下の プログラムを利用。

\$ icc int_sin.c

例2) ノード内スレッド並列(OpenMP)プログラムをコンパイル/リンクする。
 ※/center/local/apl/cx/intel/composerxe/Samples/en_US/C++/openmp_samples 配下のプログラムを利用。

\$ <u>icc</u> -openmp openmp_sample.c

例 3) MPI 並列プログラムをコンパイル/リンクする。

※/center/local/apl/cx/intel/impi/4.1.1.036/test/配下のプログラムを利用。

\$ mpiicc test.c

●実行

例 1) TSS 実行(逐次、OpenMP) ※OpenMP 実行時、環境変数 OMP_NUM_THREADS にスレッド数を指定してください。

\$./a.out

例 2) TSS 実行(MPI)

```
$ mpirun -n 4 ./a.out
```

例 3) バッチ実行(逐次)

```
$ cat go_intel.sh
#!/bin/bash -x
#PJM -L "vnode=1"
#PJM -L "vnode-core=1"
#PJM -L "rscgrp=cx-small"
#PJM -j
#PJM -s
./a.out
```

例 4) バッチ実行(OpenMP)

```
$ cat go_intel_OMP.sh
#!/bin/bash -x
#PJM -L "vnode=1"
#PJM -L "vnode-core=14"
#PJM -L "rscgrp=cx-small"
#PJM -j
#PJM -j
#PJM -5
source /center/local/apl/cx/intel/composerxe/bin/compilervars.sh intel64
OMP_NUM_THREADS=14; export OMP_NUM_THREADS
THREAD_STACK_SIZE=8192; export THREAD_STACK_SIZE
./a.out
```

例 5) バッチ実行(MPI)

9.1.6 MPI 実行方法をご参照ください。

9.1.5 C++コンパイル/リンク/実行方法

Intel C++コンパイラは icpc コマンドを利用します。MPI ライブラリを使用する場合は、mpiicpc コマンドを利用します。

●コンパイル・リンク

 例 1) 逐次 C++プログラムをコンパイル/リンクする。
 ※/center/local/apl/cx/intel/composerxe/Samples/en_US/C++/optimize 配下の プログラムを利用。

\$ icpc int_sin.c

例 2) ノード内スレッド並列(OpenMP)プログラムをコンパイル/リンクする。 ※/center/local/apl/cx/intel/composerxe/Samples/en_US/C++/openmp_samples 配下 のプログラムを利用。

\$ <u>icpc</u> -openmp openmp_sample.c

例 3) MPI 並列プログラムをコンパイル/リンクする。

※/center/local/apl/cx/intel/impi/4.1.1.036/test/配下のプログラムを利用。

\$ mpiicpc test.cpp

●実行

例 1) TSS 実行(逐次、OpenMP)

※OpenMP 実行時、segmentation fault となる場合は、スタックサイズを拡張してください。 ※OpenMP 実行時、環境変数 OMP_NUM_THREADS にスレッド数を指定してください。

```
$ ./a.out
```

例1で segmentation fault となる場合のスタックサイズ拡張方法)

```
$ ulimit -s unlimited
```

例 2) TSS 実行(MPI)

```
$ mpirun -n 4 ./a.out
```

例 3) バッチ実行(逐次)

```
$ cat go_intel.sh
#!/bin/bash -x
#PJM -L "vnode=1"
#PJM -L "vnode-core=1"
#PJM -L "rscgrp=cx-small"
#PJM -j
#PJM -s
./a.out
```

例 4) バッチ実行(OpenMP)

```
$ cat go_intel_OMP.sh
#!/bin/bash -x
#PJM -L "vnode=1"
#PJM -L "vnode-core=1"
#PJM -L "rscgrp=cx-small"
#PJM -j
#PJM -j
#PJM -s
source /center/local/apl/cx/intel/composerxe/bin/compilervars.sh intel64
OMP_NUM_THREADS=14; export OMP_NUM_THREADS
THREAD_STACK_SIZE=8192; export THREAD_STACK_SIZE
./a.out
```

例 5) バッチ実行(MPI)

9.1.6 MPI 実行方法をご参照ください。

なお、詳細は、「第 3.4 バッチジョブ投入」をご参照ください。Fortran/C/C++のバッチジョブ実行のスクリプトについては、/center/local/sample/lang_sample/intel 配下をご参照ください。

9.1.6 MPI 実行方法

```
Intel MPI は、以下のように実行します。
注意事項)CX2550 システム(cx-*** リソースグループ)を使った
IntelMPI ジョブ実行時は、スクリプト内(手続き処理部)に
#PJM -L "vnode-core=28"
#PJM -P "vn-policy=abs-unpack"
を指定してください。
```

なお、CX270 システム(cx2-*** リソースグループ)を使った IntelMPI ジョブ実行時は、スクリプト内(手続き処理部)に #PJM -L "vnode-core=24" #PJM -P "vn-policy=abs-unpack" を指定してください。

例1) 自ノードで4プロセスを実行する場合

```
$ mpirun -n 4 ./test_mpi
Hello world: rank 0 of 4 running on cx01
Hello world: rank 1 of 4 running on cx01
Hello world: rank 2 of 4 running on cx01
Hello world: rank 3 of 4 running on cx01
```

例2) バッチジョブで CX2550 で実行させる場合(フラット MPI) ※2 ノード×28 プロセス=56 プロセスの場合

\$ cat mpi_flat.sh						
#!/bin/sh						
# pjsub option#						
#PJM -L "rscgrp=cx-small"						
#PJM -L "vnode=2"						
#PJM -L "vnode-core=28"						
#PJMmpi "rank-map-bynode"						
#PJM -P "vn-policy=abs-unpack"						
#PJM -L "elapse=10:00"						
#РЈМ -j						
#PJM -S						
# program execution#						
<pre>source /center/local/apl/cx/intel/composerxe/bin/compilervars.sh intel64</pre>						
<pre>source /center/local/apl/cx/intel/impi/4.1.1.036/bin64/mpivars.sh</pre>						
<pre>source /center/local/apl/cx/intel/mkl/bin/mklvars.sh intel64</pre>						
export I_MPI_HYDRA_BOOTSTRAP=rsh						
export I_MPI_HYDRA_BOOTSTRAP_EXEC=/bin/pjrsh						
export I_MPI_HYDRA_HOST_FILE=\${PJM_0_NODEINF}						
mpiexec.hydra -np 56 ./a.out						

例3) バッチジョブで CX2550/CX270 で実行させる場合(ハイブリッド)

```
$ cat mpi_hybrid.sh
#!/bin/sh
#----- pjsub option -----#
#PJM −L
           "rscgrp=cx-small"
#PJM −L
          "vnode=2"
#PJM −L
          "vnode-core=28"
#PJM --mpi "rank-map-bynode"
#PJM −P
          "vn-policy=abs-unpack"
#PJM −L
          "elapse=10:00"
#₽JM -j
#PJM −S
#----- program execution -----#
source /center/local/apl/cx/intel/composerxe/bin/compilervars.sh intel64
source /center/local/apl/cx/intel/impi/4.1.1.036/bin64/mpivars.sh
source /center/local/apl/cx/intel/mkl/bin/mklvars.sh intel64
export I_MPI_PIN_DOMAIN=omp
export OMP_NUM_THREADS=28
export I_MPI_HYDRA_BOOTSTRAP=rsh
export I_MPI_HYDRA_BOOTSTRAP_EXEC=/bin/pjrsh
export I_MPI_HYDRA_HOST_FILE=${PJM_O_NODEINF}
mpiexec.hydra -np 2 ./a.out
```

※Intel MPI について、mpiexec.hydra での実行方法に変更になりました。 従来指定 mpdboot については intel mpi の次期バージョンアップで削除される可 能性があります。mpdboot を指定して実行する場合、環境変数 I_MPI_CPUINFO に"proc"を指定してください。

参考例)バッチジョブでCX2550M1/CX270で実行させる場合(ハイブリッド)(mpdboot)

```
#!/bin/bash
#PJM -L "rscgrp=cx-small"
#PJM -L "vnode=1"
#PJM -L "vnode-core=1"
##PJM -P "vn-policy=abs-unpack"
#PJM -L "elapse=10:00"
#₽JM -j
#PJM −X
#PJM -S
source /center/local/apl/cx/intel/impi/4.1.1.036/intel64/bin/mpivars.sh
NODES = \{PJM_VNODES\}
CORES=${PJM_VNODE-CORES}
PROCS=1
export I_MPI_PERHOST=$CORES
export I_MPI_FABRICS=shm:ofa
export I_MPI_CPUINFO=proc
mpdboot -n $NODES -f ${PJM_O_NODEINF} -r /bin/pjrsh
mpiexec -n $PROCS ./a.out
mpdallexit
```

なお、詳細は、「第 3.4 バッチジョブ投入」をご参照ください。MPI のバッチジョブ 実行のスクリプトについては、/center/local/sample/lang_sample/intel 配下をご参照く ださい。

9.1.7 MKL

サンプルプログラムを用いたコンパイルと実行結果は以下のとおりです。

```
(コンパイルまで)
$ cp /center/local/apl/cx/intel/mkl/examples/examples_f95.tgz .
$ tar zxf examples_f95.tgz
$ cd blas95
$ make libintel64 >make.log 2>&1
(実行(例)BLAS @ dasumx)
$ cd _results/intel_lp64_parallel_intel_iomp5_intel64_lib
$ ./dasumx.out < ../../data/dasumx.d
D A S U M EXAMPLE PROGRAM
INPUT DATA
N= 7
VECTOR X INCX= 1
    1.630 -2.220 3.870 4.910 -5.450 6.200 -7.770
OUTFUT DATA
DASUM = 32.050</pre>
```

9.1.8 MKL(DFTI モジュールを利用する場合)

DFTI モジュールを Fortran からご利用される場合は、以下のようにコンパイルして ください。(一例です)

※DFTI モジュール定義を呼び出す必要があります。

他のモジュールをプログラム内で USE する場合は、

/center/local/apl/cx/intel/mkl/include 配下のソースプログラムをご指定ください。

9.1.9 その他

●CX で MKL ライブラリーが提供する FFTW インタフェースをご利用される場合 以下のオプションが必要です。

-I/center/local/apl/cx/intel/mkl/include/fftw

-l/center/local/apl/cx/intel/mkl/lib/intel64

Fortran プログラムから LAPACK を利用する場合は、以下のオプションが必要です。

-lmkl_lapack95_lp64

Fortran プログラムから BLAS を利用する場合は、以下のオプションが必要です。

-lmkl_blas95_lp64

その他の基本的な MKL の関数・機能については、以下のオプションを指定してください。

-lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core

●CX で FFTW インタフェースをご利用される場合

以下のオプションが必要です。

```
-I/center/local/apl/cx/fftw-3.3.4/include
```

-L/center/local/apl/cx/fftw-3.3.4/lib

基本的な関数・機能については、以下のオプションを指定してください。

-lfftw3 -lfftw3_mpi -lfftw3_omp

●FX で FFTW インターフェースをご利用される場合

以下のオプションが必要です。

-I/center/local/apl/fx/fftw-3.3.4/include

-L/center/local/apl/fx/fftw-3.3.4/lib

基本的な関数・機能については、以下のオプションを指定してください。

```
-lfftw3 -lfftw3_mpi -lfftw3_omp
```

9.2 Phi の利用について

CX270 システムでは Xeon Phi 3120P が利用できます。 以下に Phi 3120P の仕様を示します。

仕様					
プロセッサ・ナンバー	3120P				
コア数	57				
スレッド数	228(57 × 4)				
動作周波数(1 コア)	1.1GHz				
キャッシュ	28.5MB				
主記憶	6GB				

表 9-2 Xeon Phi の主な仕様

9.2.1 Phiの環境および留意事項について

Phiの環境および留意事項について、以下に示します。

- Xeon Phi 用のロードモジュールと Xeon 用のロードモジュールは、お互いに互換性がありません。
- Xeon Phi は MMX, SSE, SSE2, AVX 命令をサポートしていません。
- Xeon Phi には、2つの動作モード(ネイティブ,Offload)がありますが、名古屋大学の環境では、「Offload モード」での実行を許可しています。

9.2.2 コンパイル・リンク/実行方法

XeonPhi用バイナリは、Xeonノード上でコンパイル(=クロスコンパイル)し、作成します。 以下にサンプルプログラムを利用した、コマンド例を示します。 ※サンプルプログラムは以下にあります。

(Offload $\exists - ee)$)

 $\label{eq:center/local/apl/cx/intel/composerxe/Samples/ja_JP/C++/mic_samples/LEO_tutorial/tbo_sort.c$

9.2.2.1 Offload モード

①コンパイル・リンク及び実行

MPSS が導入されている CX270 計算ノードで Phi 対応のコンパイルを行います。 ログインノードからバッチジョブにてコンパイル及び実行します。

バッチジョブ実行のスクリプトは、/center/local/sample/phi_offload/go_cx_phi.sh を参照してく ださい。

```
$ cat go_cx_phi.sh
#!/bin/bash -x
#PJM -L "vnode=24"
#PJM -L "vnode-core=1"
#PJM -L "rscgrp=cx2-small"
#₽JM -j
#PJM -S
source /center/local/apl/cx/intel/composer_xe_2013_spl/bin/compilervars.sh intel64
####### compile #######
icc -openmp tbo_sort.c -o tbo_sort
NUM_THREADS=24; export NUM_THREADS
THREAD_STACK_SIZE=8192; export THREAD_STACK_SIZE
FLIB_FASTOMP=TRUE; export FLIB_FASTOMP
####### execute #######
export OFFLOAD_REPORT=1
./tbo_sort
```

②MKL(例 blas)

バッチジョブ実行のスクリプトについては、

/center/local/sample/phi_offload/go_cx_phi_mkl_comp.sh、go_cx_phi_mkl_run.sh を参 照してください。

(コンパイルまで)
<pre>\$ cp /center/local/apl/cx/intel/mkl/examples/examples_mic.tgz .</pre>
\$ tar zxf examples_mic.tgz
\$ cd mic_offload/blasc
\$ cat go_cx_phi_mkl_comp.sh
#!/bin/bash -x
#PJM -L "vnode=24"
#PJM -L "vnode-core=1"
#PJM -L "rscgrp=cx2-small"
#₽JM -j
#PJM -S
<pre>source /center/local/apl/cx/intel/composer_xe_2013_sp1/bin/compilervars.sh intel64</pre>
<pre>make libintel64 > make.log 2>&1</pre>

(実行) _result ディレクトリが作成される。 \$ cat go_cx_phi_mkl_run.sh #!/bin/bash -x #PJM -L "vnode=24" **#PJM -L "vnode-core=1" #PJM -L "rscgrp=cx2-small"** #₽JM -j #PJM −S source /center/local/apl/cx/intel/composer_xe_2013_sp1/bin/compilervars.sh intel64 NUM_THREADS=24; export NUM_THREADS PARALLEL=\$NUM_THREADS; export PARALLEL OMP_NUM_THREADS=\$PARALLEL; export OMP_NUM_THREADS THREAD_STACK_SIZE=8192; export THREAD_STACK_SIZE FLIB_FASTOMP=TRUE; export FLIB_FASTOMP export OFFLOAD_REPORT=1 /center/meidai/intel_sample/mic_offload/blasc/_results/intel_lp64_parallel_libintel64/ sgemm_reuse.out 10 \$ tail -30 go_cx_phi_mkl_run.sh.o39459 Matrix dimension is being set to 10 Resulting matrix C: 0.000 [Offload] [MIC 0] [File] ./source/sgemm reuse.c [Offload] [MIC 0] [Line] 100 [Offload] [MIC 0] [CPU Time] 0.524114 (seconds) [Offload] [MIC 0] [MIC Time] 0.041518 (seconds) :

10. **HPC** ポータル

HPC ポータルとは web ベースのログイン環境になります。 以下の URL よりアクセスしてください。

https://portal.cc.nagoya-u.ac.jp/

ログイン画面

CHPC Portal - Windows Internet Explorer	
🌀 🕞 🗢 🍘 https://portal.cc.naeoya-u.ac.jp/cgi-bin/hpcportalja/index.cgi 🔎 🚽 🛃 😏 🍘 HPC Portal 🗙 👘 🛠	<u> (0)</u>
」ファイル(E) 編集(E) 表示(V) お気に入り(A) ツール(D) ヘルブ(H)	
HPC Portal	
[English /Japanese]	
HPC Portal	
HPC Portal Ver.3.0 by FUJITSU LIMITED	
■ログイン	
ー ユーザ名とパスワードを入力して [Login] ボタンをクリックしてください。	-
2 ユーザ名: ► パスワード:	
LOGIN RESET	
お知らせ	
・ HPC Portalがサポートするクライアント環境は以下の通りです。	
(JREは、ファイルのUpload/Download機能を利用する際に必要となります)	
OS Windows XP/Vista/ / ブラウザ Internet Explorer 8/9/10, FireFox 23	
Java Java Runtime Environment(JRE) 7	
● JREは <u>こちら(Oracleのサイト)</u> から入手することができます。	
Fujitsu HPC Portal hpc	ptl

10.1 HPC ポータル機能

各機能の詳細については HPC ポータルの「10.1.15) ポータル利用手引き」を参照して下さい。

10.1.1 メイン

1) About

HPC ポータルの概要や機能紹介

2) 設定

HPC ポータルのユーザー設定

HPC Portal - Windows Interne	et Explorer			<u>- </u>
C C V Market S //portal.cc.na	goya-u.ac.jp/cgi-bin/hpcportal_u.ja/index.cgi	<u>۹</u>	🐓 🥖 HPC Portal 🗙 👘	r 🖈 🔅
」 ファイル(<u>E</u>) 編集(<u>E</u>) 表示(<u>V</u>) お	6気に入り(A) ツール(T) ヘルプ(H)			
HPC Portal	メインファイル操作	'F	コンパイル ジョブ投入 状態表示	
USER-ID:			2 בילדים 2 בילדים 2 בילדים ביל בילדים בילדים ב בילדים בילדים בילדים בילדים בילדים בילדים בילדים בילדים בילדים בילדים בילדים ביל בילדים בילדים ביל	ヽレプ
About	設定			^
「設定」				
■ NAD T Web	カレントディレクトリの履歴数 (5 - 20 世代):	5	世代	
■ ポータル利用手引き	テキストファイルの編集サイズの制限	10240	VB(このサイブを招うスファイルについてけ、毎年するほわりに対向、ロードを行います)	
■ 富士通マニュアル	(0 - 10240 KB):	102.10	ND (このリイスを起えるファイルについては、構造する100プリにクランロードで11いよす)	
	自動更新間隔 (60 - 600 sec):	60	sec	
	ページあたりのファイル一覧・ジョブ一覧 表示数 (20 - 100 件):	20	ファイル・ジョブ	
	ディレクトリツリー全体のディレクトリ表示数 (10 - 1000 ディレクトリ):	1000	ディレクトリ	
	ディレクトリあたりのサブディレクトリ表示数 (10 - 100 ディレクトリ):	20	ディレクトリ	
	テキストファイルのページ表示における、 ページあたりの表示行数 (50 - 1000 行):	100	र ग	
			Save Reset	
	巻発ディレクトリの炉作			
	豆球ノイレントリの補集			- 1
				~
Fujitsu HPC Portal				hpcptl

3) パスワード変更

パスワード変更

CHPC Portal - Windows Intern	net Explorer				
😋 🕞 🗢 🥖 https://portal.ccm	nagoya-u.ac.jp/cgi-bin/hpcportal_u.ja/in	dex.cgi 🔎 🗲 😚	🧉 HPC Portal	×	n 🛧 🔅
」 ファイル(<u>F</u>) 編集(<u>E</u>) 表示(<u>V</u>)	お気に入り(A) ツール(T) ヘルプ(H)				
HPC Portal	メイン	ファイル操作	コンパイル	ジョブ投入	状態表示
USER-ID:					🛛 ログアウト 🖻 ヘルプ
About	パスワード変更				
■ 設定					
「パスワード変更					
- SSH公開鍵登録	現在のパスワード				
■ ポータル利用手引き	新しいパスワード				
- 富士通マニュアル	新しいパスワード(再入力)				
			1		
		変更する	人力をやり直す		
Futitsu HPC Portal					boot
rujisu nre ronar					npcpu

4)SSH 公開鍵登録

公開鍵の登録

EHPC Portal - Windows Internet Explorer	
🚱 🕤 🗢 🦉 https://portal.cc.nagoya-uac.jp/cgi-bin/hpcportal_uja/index.cgi 🔎 🚽 🚰 😚 🍘 HPC Portal 🗙	☆ 🕆
」ファイル(E) 編集(E) 表示(V) お気に入り(A) ツール(I) ヘルプ(H)	
HPC Portal メイン ファイル操作 コンパイル ジョブ投入	状態表示
USER-ID:	□ □グアウト 🖻 ヘルプ
About	
■ パスワード変更	
SSH公開鍵登録 登録先: /center/ /.ssh/authorized_keys	
■富士通マニュアル	^
∧∖用思辞准 ・	
	\sim
※公開鍵の中に改行文字が入らないようにご注意ください	
※公開還は現在のファイルに追加書きを行います(存在しない場合は新規作成) ※一度の操作で複数の公開鍵を登録することはできません。公開鍵は1つずつ登録してください。	
登録する 入力をやり直す	
Fujitsu HPC Portal	hpcptl

5) ポータル利用手引き

HPC ポータルの利用者マニュアル

6) 富士通マニュアル 富士通のコンパイラ、ツール、ライブラリ等のマニュアル

10.1.2 ファイル操作

ユーザーディレクトリのファイル操作

CHPC Portal - Windows Internet Exp	lorer					
😋 💿 🗢 🧟 https://portal.cc.nagoya-u	u ac.jp /ogi-bin/hpoportal_u.ja/inde	exagi 🔎 🔤	🛨 🏉 HPC Portal	×		🟦 🛧 🌣
」 ファイル(E) 編集(E) 表示(⊻) お気にみ	の(A) ツール(D) ヘルプ(H)					
HPC Portal	メイン	ファイル操作	コンパイル		ジョブ投入	状態表示
USER-ID:						🛙 ログアウト 🖻 ヘルプ
現在のディレクトリ 💽 /center/			××	•		レイアウト初期化 🔺
ナビゲーション 🔍	ファイル一覧					
ディレクトリ選択 +	ファイル/ディレクトリ	サイズ	オーナー グループ	τ −ド	更新時刻	
ファイル検索 +	.	-	center	rwxrwxrwx	2013-08-01 13:22:03	
テキスト検索 +						
画像キャビネット表示 +						
						~
	4 4 ペ−ジ 1 /3	▶ ▶ 2 なし		*		□ 全選択 💙
Fujitsu HPC Portal						hpcptl

10.1.3 コンパイル

コンパイル環境

EHPC Portal - Windows Internet Explorer							
🕞 🕞 🗢 🌈 https://portal.cc.nag	goya-u.ac.jp/cgi-bin/hpcportal_u.ja	/index.cgi 🔎 🔽	🔒 😏 <i>i</i> HPC Portal	×	6 🖈 🔅		
」ファイル(<u>E</u>) 編集(<u>E</u>) 表示(<u>V</u>) お							
HPC Portal	メイン	ファイル操作	コンパイル	ジョブ投入	状態表示		
USER-ID:					□ ログアウト □ ヘルプ		
現在のディレクトリ 💽 /center	/		× • •		レイアウト初期化		
ナビゲーション 🔍	ファイル一覧						
ディレクトリ選択 +	ファイル/ディレクトリ	サイズ フ	t−ナ− グル−プ モ−ド	更新時刻			
ファイル検索 +	.	-	center rwxrwxrwx	2013-08-01 13:22:03			
テキスト検索 +							
	1/3	N 2 なし	v		全選択		
	システム/言語:	fx	Y / Fortran	~	^		
	アクション: () コンパイル・リンク () コンパイルのみ						
	最適化: ○ -Kfast ○ -03 ○ -02 ○ -01 ○ -00 ○ 指定しない ○						

10.1.4 ジョブ投入

ジョブの実行環境

🩋 HPC Portal - Win	dows Int	ernet Explorer						- O ×
😋 💿 🗢 🧟 https	://portal.c	cc nagoya-u.ac.jp/cgi-bin/hpcportal_u.ja/inde	xogi 🔎		🔄 🏉 нрс	Portal	×	⋒ 🛧 🌣
」 ファイル(<u>F</u>) 編集(<u>E</u>)	表示()/) お気に入り(<u>A</u>) ツール(T) ヘルプ(<u>H</u>)						
HPC Porta	1	メイン	ファイル操作		=	レパイル	ジョブ投入	状態表示
USER-ID:								🛛 ログアウト 🖻 ヘルプ
現在のディレクトリ	•/					~ 🔶 🖬]	レイアウト初期化 へ
ナビゲーション		ファイル一覧						
ディレクトリ選択	+	ファイル/ディレクトリ	サイズ	オーナー	グループ	τ −ド	更新時刻	
テキスト検索		D .	- 1	root	root	r-xr-xr-x	2013-09-28 03:12:51	~
								~
			≈ なし			~		□ 全選択
		システム/キュー:	fx			~ /	▼	^
		ジョブタイプ:	通常	~				
		ノード:	形状		1	88		
				~ Reset	Save	Edit	Submit	· ·
Fujitsu HPC Port	al							hpcptl

10.1.5 状態表示

ジョブの実行状況などの状態表示

🩋 HPC Portal - Windows Interne	t Explorer							_	
🚱 🗢 🥖 https://portal.cc.nae	goya−u.ac.jp /cgi−bin/hpo	portal_u.ja∕index.cgi	🔒 💌 🧧	🚹 🛃 👩 HPC P	ortal	×		<u> </u>	☆ 🕸
」 ファイル(<u>E</u>) 編集(<u>E</u>) 表示(⊻) お)気に入り(<u>A</u>) ツール(<u>T</u>)	ヘルプ(円)							
HPC Portal	*17	7	マイル操作	ער	パイル	≈∋ರ	投入	北能表示	
USER-ID	×12				/////	717		2 ログアウト 🛙 へル	7
サブシステムI									
■キュー状態	XYXTA Y	ヨノ仏窓							-
■ ジョブ状態	3737 1 77737								
サブシステムI								[
■ キュー状態	ジョフID 種	ジョフ名 ·····	ユーサ	グループ	UV-ZGr	状態	経過時間	終了時刻	
■ ジョブ状態						•	*******	*******	
ディスク									
■ディスク使用量									
	<							>	
	ALL	*	I4 4 1~-	-ジ1/1 ▶		自動更新 🗌 全選折	311章	レイアウト初期化	
Fujitsu HPC Portal								h	pcptl

11. マニュアル

システム上の以下のディレクトリ配下にマニュアルが配置されています。

• (FX100) : /opt/FJSVmxlang/manual

(2016.06.08 更新)

• (CX) : /opt/FJSVpclang/1.2.0/manual/

分類	資料名
コンパイラ	Fortran 文法書
並列ライブラリ	Fortran 使用手引書
	Fortran 翻訳時メッセージ
	C言語使用手引書
	C++言語使用手引書
	C/C++最適化メッセージ
	XPFortran 使用手引書
	Fortran/C/C++実行時メッセージ
	MPI 使用手引書
プログラム開発支援ツール	実行時情報出力機能使用手引書
	プログラミング支援ツール使用手引書
	プロファイラ使用手引書
	デバッガ使用手引書
	ランク配置最適化ツール使用手引書
数学ライブラリ	数学ライブラリの利用手引
	富士通 SSL II 使用手引書
	FUJITSU SSL II 拡張機能使用手引書
	FUJITSU SSL II 拡張機能使用手引書 II
	FUJITSU SSL II スレッド並列機能 使用手引書
	FUJITSU C-SSL II 使用手引書
	FUJITSU C-SSL II スレッド並列機能 使用手引書
	FUJITSU SSL II/MPI 使用手引書
	BLAS LAPACK ScaLAPACK 使用手引書

表 7-1 マニュアル一覧

本書の一部、または全部を無断で複製、転載、再配布することを禁じます。

Copyright (C) 2019 Kazunari Yamada of Nagoya University ICTS. ALL Rights Reserved.