

第5回 スーパーコンピュータ「不老」

2024年10月2日(水)13:30~17:05@名古屋大学情報基盤センター2F 演習室

超多ケース弾塑性シミュレーションによる 3D生成AIの訓練と精度検証

名古屋大学大学院工学研究科 准教授 理化学研究所 計算科学研究センター 客員研究員 nishiguchi.koji.r9@f.mail.nagoya-u.ac.jp

Acknowledgment

NAGOYA UNIVERSITY

計算資源

Supercomputer "Fugaku" research project (hp220249)

- -Capacity computing of elasto-plastic dynamics of component structures for nextgeneration automobile design and its probabilistic deep generative models
- -2022/10/01 present
- -Research representative: Koji Nishiguchi, Nagoya University
- -Participating institutions:

1. Background and objective

2.3D dataset generation by supercomputer Fugaku

3. 3D generative AI incorporating structural dynamics

4. Performance verification of trained AI

5. Concluding remarks

Recent studies of 3D generative AI

NAGOYA UNIVERSITY

- From 2022 onwards, not only 2D generative AI but also 3D generative AI have been emerging one after another.
 - —The number of datasets for 3D shapes is much smaller than that for natural language and images.
 - -No dataset that can be applied to structural mechanics has been proposed.

Model name	Release date	Research group	3D representation	Model architecture	Data set	Number of 3D data	🖕 🍹
Shap-E	May 2023	OpenAl	Implicit function	Transformer-based diffusion model	ShapeNet(3D), WebImageText(2D)	Several millions	A birthday cupcake A chair that looks like a tree
Point-E	December 2022	OpenAl	3D point cloud	Transformer-based diffusion model	ShapeNet(3D), WebImageText(2D)	Several millions	A penguin Ube ice cream cone Shap-E
Magic3D	November 2022	NVIDIA	3D mesh	NeRF, diffusion model	COCO (2D), ImageNet (2D)	None	Magic3D
DreamFusion	September 2022	Google, UCB	Implicit function	NeRF, diffusion model	COCO (2D), ImageNet (2D)	None	Arrent Ar

Lack of 3D datasets

NAGOYA UNIVERSITY

- CLIP is used to compensate for the lack of 3D datasets.
 - —Point-E (OpenAI, December 2022)
 - >https://arxiv.org/pdf/2212.08751.pdf

Industrial impact of giga-casting

NAGOYA UNIVERSITY

https://thelastdriverlicenseholder.c om/2022/04/20/tesla-revenuegrows-81-percent-in-q1-2022/

https://lowcarb.style/2022/08/23/t esla-gigapress-giga-texas/

Shock-absorbing structure (Tesla)

Giga-press (Tesla)

- In 2020: Tesla started using gigacasting for "Model Y" of the rear body.
 —30% weight reduction, 40% manufacturing cost reduction
- In 2022: Chinese BEV companies (NIO and Xpeng) and Volvo has also decided to adopt it.
- In 2023: Toyota Motor Corporation has also decided to adopt it.
- Difficult to find optimal structure for shock-absorbing

Innovating vehicle structure with a giant aluminum die-casting

30% weight reduction
 40% manufacturing cost reduction

Giga-press (Tesla)

3D generative AI (Parameter-to-3D model) for nonlinear structural design

Rapid performance improvement of 3D generative AI

1. Background and objective

2. 3D dataset generation by supercomputer Fugaku

- 3. 3D generative AI incorporating structural dynamics
- 4. Performance verification of trained AI
- 5. Concluding remarks

https://www3.nhk.or.jp/nhkworld/en/ondemand/video/2015315/

Many-case topology optimization

- Methods to find the best distribution of material for a given domain and boundary conditions
 - Linear (static, small deformation) problems: established
 Nonlinear (crash) problems: not established yet

Many-case topology optimization

- By changing the direction of loading, we generated
 10114 cases of structural topology.
 - -2,097,152 cell mesh
 - —16 nodes of Fugaku (64rank×8threads)
 - -30 min for each case

Many-case topology optimization

Many-case crash simulation

Eulerian finite volume method*

- Automatic and quick mesh generation
- Robust computation for large deformation
- To get shock-absorbing energy (parameter)

*K. Nishiguchi, et al. "Eulerian elastoplastic simulation of vehicle structures by building-cube method on supercomputer Fugaku." Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region. 2024.

Many-case crash simulation

- By performing an elastoplastic crash simulation on 10114 cases, we obtained the shock-absorbing energy of each case.
- -4,194,304 cell mesh
- —32 nodes of Fugaku
 - (128 rank \times 8 threads,
 - 1024 cores) for each
- -2.5 hour for each case

Number of data

- 1. Background and objective
- 2. 3D dataset generation by supercomputer Fugaku

3. <u>3D generative AI incorporating structural dynamics</u>

- 4. Performance verification of trained AI
- 5. Concluding remarks

https://cameronrwolfe.substack.com/p/3d-generative-modeling-with-deepsdf

- 3D形状の陰関数をニューラルネットワークで近似するアプローチ
- メモリ消費量が少ない
- 3D表現の柔軟性
 - —任意の解像度,トポロジーが表現できる
 - --表現できる3D情報の精細さ ∝ NN の表現力 ≒ パラメータ数
- 深層学習で取り扱いやすい

ボクセル

メッシュ Neural Field

 近年、コンピュータ・ビジョンやコンピューター グラフィックスの領域では 主流の手法の一つになっている

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 165-174

- Define the SDF value (shortest distance from the surface) at sample points in space.
- Represent a 3D shape as a vector using the coordinates of sample points and SDF values.

DeepSDF incorporating structural dynamics

- NAGOYA UNIVERSITY
 - We introduced **positional encoding** to improve the reconstruction accuracy for complex shapes.

1. Background and objective

2. 3D dataset generation by supercomputer Fugaku

3. 3D generative AI incorporating structural dynamics

4. <u>Performance verification of trained AI</u>

5. Concluding remarks

Generalization performance for 3D shape

NAGOYA UNIVERSITY

- How well 3D generative AI can produce data that is similar to the true data distribution, especially for unseen (test) shape.
- The trained generative AI demonstrates generalization performance for 3D shape generation.
 - —The 3D generation error for the test data is almost the same as the 3D generation error for the training data.

- 指定したカ学的パラメータを満 足する3D形状をさまざまな形状 でランダムに生成できた。
- ・既往の逆解析手法(トポロジー 最適化など)にはない「生成AI ならでは」の特長.

入力値
 (衝撃吸収エネルギー、荷重方向、体積、高さ)
 (12.5J, X:0.0, Y:0.0, Z:-1.0, 16.9cm³, 15.0cm)

Accuracy verification of parameter-to-3D tasks

NAGOYA UNIVERSITY

- Generated 340 shapes
 - —17 cases with strain energy ranging from 12.6J to 33.7J
 - -Generated 20 shapes each
 - -Computed the strain energy of the generated shape using Eulerian method

Number of data	340
Average accuracy	95.7 %
Median accuracy	96.5%
Average error	0.68J
Median error	0.74J

- 1. Background and objective
- 2. 3D dataset generation by Fugaku
- 3. 3D generative AI incorporating structural dynamics
- 4. Performance verification of trained AI

5. Concluding remarks

- We have proposed 3D generative AI incorporating structural dynamics, based on DeepSDF.
 - We generated **10114 datasets of paired 3D shapes and structural dynamics parameters** using the supercomputer "Fugaku" with linear topology optimization and Eulerian method.
 - —We confirmed that the **trained 3D generative AI** can generate 3D shapes that satisfy the input parameters with **a median accuracy of 96.5%**.
- The proposed 3D generative AI presents new possibilities for structural design methodologies.

Large-scale training of 3D generation AI

—To create a dataset including millions of paired 3D shapes and their corresponding mechanical parameters.

—Distributed parallel learning of 3D generation AI.

To develop a 3D generative model for thin-walled structures