CUDA-Qが拓く量子古典ハイブリッド計算の未来 Ikko Hamamura | Quantum Algorithm Engineer, NVIDIA 第5回 スーパーコンピュータ「不老」 ユーザ会 | Oct 2, 2024

NVIDIA is not building Qubits

.

.

NVIDIA is building all Accelerated Quantum Supercomputers

NVIDIA's History of Enabling Computing Revolutions

Scientific Computing

NVIDIA's History of Enabling Computing Revolutions

Scientific Computing

Generative Al

Deep Learning

Quantum Computing

QPU vendors

NVIDIA Accelerates Quantum Access to HPC for the whole quantum ecosystem

App developers

Academics

NVIDIA Quantum

Integrated with HPC

Gefion | NNF | Denmark

Julich SCC | Germany

ABCI-Q | AIST | Japan

Pawsey SCC | Australia

Broad partner network

>90%

Largest Startups Working with NVIDIA

>75%

QPUs Integrating NVIDIA software

15/17

Leading Quantum **Development Frameworks** Accelerated

Quantum Accelerated Supercomputing Supercomputers are the foundation of Quantum R&D

- Programming model extending C++ and Python with guantum kernels
- Open programming model, open-source compiler
 - <u>https://github.com/NVIDIA/cuda-quantum</u>
- QPU Agnostic Partnering broadly including superconducting, trapped ion, neutral atom, photonic, and NV center QPUs
- Interoperable with the modern scientific computing ecosystem
- Seamless transition from simulation to physical QPU

```
auto ansatz = [](std::vector<double> thetas) __qpu__ {
  cudaq::qreg<3> q;
  x(q[0]);
  ry(thetas[0], q[1]);
  ry(thetas[1], q[2]);
  x<cudaq::ctrl>(q[2], q[0]);
  x<cudaq::ctrl>(q[0], q[1]);
  ry(-thetas[0], q[1]);
  x<cudaq::ctrl>(q[0], q[1]);
  x<cudaq::ctrl>(q[1], q[0]);
};
cudaq::spin_op H = ...;
double energy = cudaq::observe(ansatz, H, {M_PI, M_PI_2});
```

CUDA-Q

Platform for unified quantum-classical accelerated computing

HYBRID APPLICATIONS

Drug Discovery, Chemistry, Weather, Finance, Logistics, and More

CUDA Quantum Hybrid Quantum-Classical Programming Platform

SYSTEM-LEVEL COMPILER TOOLCHAIN (NVQ++)

CUDA-Q 0.8 Now Available Python – Install from PyPi

CUDA-Q Academic Educational resources for CUDA-Q (https://github.com/NVIDIA/cuda-q-academic)

NVIDIA Quantum Cloud GPUs and QPUs in the cloud.

CUDA-Q Now Available The hybrid quantum computing platform

C++ – download from GitHub (<u>https://github.com/NVIDIA/cuda-quantum/releases</u>)

Early Access: https://www.nvidia.com/en-us/solutions/quantum-computing/cloud/

• cuStateVec: a library to accelerate statevector-based quantum circuit simulation

- Most computations are "in-place" to reduce memory usage
- Provides low-level primitives to cover common use cases:
 - 1) Apply gate matrix
 - Apply diagonal/general permutation matrix
 - Apply exponential of Pauli matrix product
 - Expectation using matrix as observable
 - Expectation on Pauli basis
 - Sampling
 - Measurement on a Z-product basis
 - Batched single qubit measurement 8)
 - State vector segment extraction/update
 - **10)** Qubit reordering on single/multiple device(s)

cuStateVec Part of NVIDIA cuQuantum SDK

C API

custatevecStatus t custatevecApplyMatrix(custatevecHandle t handle, void *sv, cudaDataType t svDataType, const uint32 t nIndexBits, const void *matrix, cudaDataType t matrixDataType, custatevecMatrixLayout t layout, const int32 t adjoint, const int32 t *targets, const uint32 t nTargets, const int32 t *controls, const int32 t *controlBitValues, const uint32 t nControls, custatevecComputeType t computeType, void *extraWorkspace, size t extraWorkspaceSizeInBytes)

Easy integration & adoption for a wide variety of frameworks & programming languages

Also available in the cuQuantum Appliance container (standalone & Cirq/Qsim backend)

Python API

handle, SV, sv data_type, n index bits, matrix, matrix data type, layout, adjoint, targets, n_targets, controls, control bit values, n controls, compute type, workspace, workspace size)

DVIDIA.

Research the Quantum Computer of Tomorrow on the most Powerful Computer Today

cuStatevec

Motivation: What is contraction path optimization and why is it needed?

cuTensorNet

A Library to accelerate tensor network based quantum circuit simulation

Reordering the contraction is important to minimize flops as well as memory requirements.

• Finding the optimal path is NP hard problem, which is why they only can be used for small number of tensors (terms)

Research the Quantum Computer of Tomorrow on the most Powerful Computer Today

cuQuantum

Quantum Algorithms Drug Discovery, Chemistry, Weather, Finance, Logistics, and More

Quantum Simulation Frameworks Cirq, Qiskit, Pennylane, TensorFlow Quantum, QIBO, ...

> cuQuantum cuStateVec, cuTensorNet

GPU Supercomputing

cuTensorNet

[1] Danylo Lykov et al, Tensor Network Quantum Simulator With Step-Dependent Parallelization, 2020 https://arxiv.org/pdf/2012.02430.pdf [2] Taylor Patti et al, Variational Quantum Optimization with Multibasis Encodings, 2022 https://arxiv.org/abs/2106.13304

Quantum Accelerated Supercomputing Supercomputers are the foundation of Quantum R&D

- 2000+ H100 GPUs in over 500 nodes, connected by Infiniband and powered by CUDA-Q
- Built by Fujitsu, at the G-QuAT/AIST ABCI Supercomputing Center in Tsukuba
- A platform for the advancement of quantum simulation, the integration of quantum-classical systems, and the development of new algorithms inspired by quantum technology

"ABCI-Q will let Japanese researchers explore quantum computing technology to test and accelerate the development of its practical applications. The NVIDIA CUDA-Q platform and NVIDIA H100 will help these scientists pursue the next frontiers of quantum computing research."

ABCI-Q

Japanese National Supercomputer for Quantum Research

- Masahiro Horibe, deputy director of G-QuAT/AIST

Quantum Accelerated Supercomputing Supercomputers are the foundation of Quantum R&D

- Generative Pre-Trained Transformer-based (GPT) method for computing the ground state energies
- First GPT-generated quantum circuit
- Run via CUDA-Q on NERSC Perlmutter \bullet

Generative AI + Quantum Algorithms

University of Toronto, St Jude's, and NVIDIA partner to invent GPT-QE

Generative Model

Update $\partial heta$

 Generative Pre-Trained Transformer-based (GPT) method for computing the ground state energies

First GPT-generated quantum circuit

Run via CUDA-Q on NERSC Perlmutter

Generative AI + Quantum Algorithms University of Toronto, St Jude's, and NVIDIA partner to invent GPT-QE

https://developer.nvidia.com/blog/performant-quantum-programming-even-easier-with-nvidia-cuda-q-v0-8/

CUDA-Q 0.8 Update

State handling, Pauli words, Custom unitary operations, Visualization tools, NVIDIA Grace Hopper integration

FEATURES

- State handling
 - Pauli words
 - Custom unitary operations
 - Visualization tools (latex output of circuit drawer)
- NVIDIA Grace Hopper integration

- Tightly integrates Quantum with GPU Supercomputing
- Qubit Agnostic Supports different qubit modalities
- Reduces GPU-QPU latency by 1-2 orders of magnitude
- Enables GPU Acceleration of Quantum Error Correction, Calibration, and Hybrid Algorithms
- Scalable for more GPU compute and larger QPUs

DGX Quantum

System for Integration of Quantum with GPU supercomputing

DGX Quantum

System for Integration of Quantum with GPU supercomputing

nds	
econds	
oconde	
econus	
econds	

СUDA-Q/\
日時、開催場所、定員
 2024年 10月 18日(現地(名古屋大) 現地 30名
• 終了時間は前後 講師
• エヌビディア合同会社
開催趣旨
「CUDA-Q」はNVIDIAが閉
量子コンピュータ向けのアル す。
CUDA-Qは複数GPU、複数ノ V100の豊富なGPU・メモリ
CUDA-Qは実機を含めたバッ を実行できます。
本講習会では、量子計算プラ 老」におけるCUDA-Qの利用

CUDA-Q Hands-on workshop

ンズオン講習会」(現地参加のみ)を開催します

(金) 13:00 - 17:00 学東山キャンパス 情報基盤センター2F 演習室)

する場合があります

講師 (濱村、丹、古家)

開発している量子古典ハイブリッド計算のためのオープンソースプラットフォーム です。 ゴリズム研究やアプリケーション開発には、量子回路シミュレーションが大きな役割を果たしていま

ノードを用いた量子回路シミュレーションをサポートしているので、「不老」が搭載するNVIDIA 資源を活用することができます。

ックエンドを選択し量子計算を実行でき、古典(従来型)高性能計算と組み合わせたハイブリッド計算

ットフォームに興味のある大学・研究所・企業の研究者及び学生を対象に、ハンズオンを通して「不 るCUDA-Qの利用方法を理解することを目的とします。

