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Fortran to GPU
 GPU porting of GeoFEM/Cube - a fixed-length Fortran 90 finite volume Poisson 

solver (with ICCG method) - using Anthropic Claude Code
 The input package included OpenMP-enabled code plus Word/PDF 

documentations.
 The CG solver component was successfully ported to GPU, but the custom 

matrix generation code was not effectively implemented
 The LLM appears to have learned “CG solver optimization techniques” rather 

than general optimization strategies.
void matmul_naive(int N, double *restrict A, double *restrict B, double *restrict C) {

const int BS = 128;
const int VEC = 4;
A = (double *)__builtin_assume_aligned(A, 64);
B = (double *)__builtin_assume_aligned(B, 64);
C = (double *)__builtin_assume_aligned(C, 64);
#pragma omp parallel
{

double *Bpack = (double *)_mm_malloc(BS * BS * sizeof(double), 64);
double *Apack = (double *)_mm_malloc(BS * BS * sizeof(double), 64);
Bpack = (double *)__builtin_assume_aligned(Bpack, 64);
Apack = (double *)__builtin_assume_aligned(Apack, 64);
#pragma omp for collapse(2) schedule(dynamic)
for (int i0 = 0; i0 < N; i0 += BS) {

for (int j0 = 0; j0 < N; j0 += BS) {
int i_max = i0 + BS > N ? N : i0 + BS;
int j_max = j0 + BS > N ? N : j0 + BS;
for (int i = i0; i < i_max; ++i)

for (int j = j0; j < j_max; ++j)
C[i * N + j] = 0.0;

for (int k0 = 0; k0 < N; k0 += BS) {
int k_max = k0 + BS > N ? N : k0 + BS;
int jb = j_max - j0;
int ib = i_max - i0;
for (int k = k0; k < k_max; ++k) {

const double *srcB = &B[k * N + j0];
double *dstB = &Bpack[(k - k0) * jb];
for (int j = 0; j < jb; ++j)

dstB[j] = srcB[j];
}
for (int i = i0; i < i_max; ++i) {

const double *srcArow = &A[i * N + k0];
double *dstA = &Apack[0];
for (int k = k0; k < k_max; ++k)

dstA[k - k0] = srcArow[k - k0];
for (int j = j0; j + VEC <= j_max; j += VEC) {

__m256d cvec = _mm256_loadu_pd(&C[i * N + j]);
for (int k = 0; k < k_max - k0; ++k) {

__m256d avec = _mm256_set1_pd(Apack[k]);
__m256d bvec = _mm256_load_pd(&Bpack[k * jb + (j - j0)]);
cvec = _mm256_fmadd_pd(avec, bvec, cvec);

}
_mm256_storeu_pd(&C[i * N + j], cvec);

}
for (int j = j0 + ((j_max - j0) / VEC) * VEC; j < j_max; ++j) {

double sum = C[i * N + j];
for (int k = 0; k < k_max - k0; ++k)

sum += Apack[k] * Bpack[k * jb + (j - j0)];
C[i * N + j] = sum;

}
}

}
}

}
_mm_free(Bpack);
_mm_free(Apack);

}

void matmul_naive(int N, double *A, double *B, double *C) {
for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {
double sum = 0.0;
for (int k = 0; k < N; k++) {

sum += A[i * N + k] * B[k * N + j];
}
C[i * N + j] = sum;

}
}

}

Input code
(naïve GEMM with triple loop)

Optimized output code
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Proto-typing of  multi-agent system for 
code optimization
 Developed a prototype multi-agent system for autonomous, non-stop code 

optimization as first step toward our own “Claude Code-like” solution
 Uses a local LLM (OpenAI’s gpt-oss-120b, equivalent to o4-mini)
 Runs on Ryzen AI Max+ 395 (128 GB), a ~$2,000 system
 Configured with 5 LLM agents: Project Manager (PM), 3 Programmers (PG), and 

Debugger
 Workflow: (1) PM assigns optimization tasks to PGs, (2) PGs implement code 

independently, (3) Debugger evaluates performance and detects errors, (4) 
Feedback is returned to PM - This loop continues until the time limit is reached

• NameToCcode: Generate C code 
from routine name only

• NameToOptCcode: Generate 
optimized C code from routine name 
only

• FrtcodeToOptCcode: Generate 
optimized C code from reference 
Fortran code (including routine 
specifications)

*Note: due to randomness in LLM 
outputs, we report the count of correct 
results out of 10 attempts.

BLAS code generation using general-
purpose LLMs

VibeCodeHPC
 Multi-agent system for auto-tuning HPC code using CLI-based LLM 

agents (currently based on Anthropic Claude Code)
 Intended for vibe coding, but currently closer to agentic coding
 Multiple specialized agents collaborate, including Project Manager 

(PM), System Engineer (SE), Programmer (PG), and Continuous 
Deliverer (CD) (the configuration is customizable)

 Supports dynamic role reconfiguration and monitoring of activity, 
resource, budget, etc. 

 Compared to a single-agent setup, it improves code generation quality 
per unit time and better detects requirement violations and other issues

 Evaluate the ability of general-purpose LLMs (OpenAI GPT-4.1 and o4-mini, 
April 2025) to generate C codes of BLAS routines

 Code correctness and numerical accuracy are validated across all parameter 
combinations (e.g., incx, trans, uplo, etc.) 

 Working codes are generated from only the BLAS routine name, but their 
structure often differs from the Fortran reference implementations

 LLMs may rely on documentations and specifications available online, not only 
existing codes, leading to diverse coding styles and approaches

 Performance optimization remains a major challenge, especially for level-3 
routines, which fall far short of OpenBLAS performance
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Introduction
 The Information Technology Center at Nagoya 

University is conducting the HPC-GENIE project, 
which explores the use of generative AI for the 
automatic generation and optimization of HPC 
codes. (See separate poster for project overview.)

 This poster presents several ongoing research 
activities within the HPC-GENIE project


	スライド番号 1

