
Toward Automatic HPC Code Optimization
by Generative AI Based on LLMs

Daichi Mukunoki1, Shun-ichiro Hayashi2, Koki Morita2, Tetsuya Hoshino1, Takahiro Katagiri1
1 Information Technology Center, Nagoya University, 2: Graduate School of Informatics, Nagoya University
Contact: mukunoki@cc.nagoya-u.ac.jp

Nov 16-20, SC25, St. Louis

Fortran to GPU
 GPU porting of GeoFEM/Cube - a fixed-length Fortran 90 finite volume Poisson

solver (with ICCG method) - using Anthropic Claude Code
 The input package included OpenMP-enabled code plus Word/PDF

documentations.
 The CG solver component was successfully ported to GPU, but the custom

matrix generation code was not effectively implemented
 The LLM appears to have learned “CG solver optimization techniques” rather

than general optimization strategies.
void matmul_naive(int N, double *restrict A, double *restrict B, double *restrict C) {

const int BS = 128;
const int VEC = 4;
A = (double *)__builtin_assume_aligned(A, 64);
B = (double *)__builtin_assume_aligned(B, 64);
C = (double *)__builtin_assume_aligned(C, 64);
#pragma omp parallel
{

double *Bpack = (double *)_mm_malloc(BS * BS * sizeof(double), 64);
double *Apack = (double *)_mm_malloc(BS * BS * sizeof(double), 64);
Bpack = (double *)__builtin_assume_aligned(Bpack, 64);
Apack = (double *)__builtin_assume_aligned(Apack, 64);
#pragma omp for collapse(2) schedule(dynamic)
for (int i0 = 0; i0 < N; i0 += BS) {

for (int j0 = 0; j0 < N; j0 += BS) {
int i_max = i0 + BS > N ? N : i0 + BS;
int j_max = j0 + BS > N ? N : j0 + BS;
for (int i = i0; i < i_max; ++i)

for (int j = j0; j < j_max; ++j)
C[i * N + j] = 0.0;

for (int k0 = 0; k0 < N; k0 += BS) {
int k_max = k0 + BS > N ? N : k0 + BS;
int jb = j_max - j0;
int ib = i_max - i0;
for (int k = k0; k < k_max; ++k) {

const double *srcB = &B[k * N + j0];
double *dstB = &Bpack[(k - k0) * jb];
for (int j = 0; j < jb; ++j)

dstB[j] = srcB[j];
}
for (int i = i0; i < i_max; ++i) {

const double *srcArow = &A[i * N + k0];
double *dstA = &Apack[0];
for (int k = k0; k < k_max; ++k)

dstA[k - k0] = srcArow[k - k0];
for (int j = j0; j + VEC <= j_max; j += VEC) {

__m256d cvec = _mm256_loadu_pd(&C[i * N + j]);
for (int k = 0; k < k_max - k0; ++k) {

__m256d avec = _mm256_set1_pd(Apack[k]);
__m256d bvec = _mm256_load_pd(&Bpack[k * jb + (j - j0)]);
cvec = _mm256_fmadd_pd(avec, bvec, cvec);

}
_mm256_storeu_pd(&C[i * N + j], cvec);

}
for (int j = j0 + ((j_max - j0) / VEC) * VEC; j < j_max; ++j) {

double sum = C[i * N + j];
for (int k = 0; k < k_max - k0; ++k)

sum += Apack[k] * Bpack[k * jb + (j - j0)];
C[i * N + j] = sum;

}
}

}
}

}
_mm_free(Bpack);
_mm_free(Apack);

}

void matmul_naive(int N, double *A, double *B, double *C) {
for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {
double sum = 0.0;
for (int k = 0; k < N; k++) {

sum += A[i * N + k] * B[k * N + j];
}
C[i * N + j] = sum;

}
}

}

Input code
(naïve GEMM with triple loop)

Optimized output code

0
20
40
60
80

100
120
140
160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

GF
lo

ps
/s

Iteration (code version)

Performance

Proto-typing of multi-agent system for
code optimization
 Developed a prototype multi-agent system for autonomous, non-stop code

optimization as first step toward our own “Claude Code-like” solution
 Uses a local LLM (OpenAI’s gpt-oss-120b, equivalent to o4-mini)
 Runs on Ryzen AI Max+ 395 (128 GB), a ~$2,000 system
 Configured with 5 LLM agents: Project Manager (PM), 3 Programmers (PG), and

Debugger
 Workflow: (1) PM assigns optimization tasks to PGs, (2) PGs implement code

independently, (3) Debugger evaluates performance and detects errors, (4)
Feedback is returned to PM - This loop continues until the time limit is reached

• NameToCcode: Generate C code
from routine name only

• NameToOptCcode: Generate
optimized C code from routine name
only

• FrtcodeToOptCcode: Generate
optimized C code from reference
Fortran code (including routine
specifications)

*Note: due to randomness in LLM
outputs, we report the count of correct
results out of 10 attempts.

BLAS code generation using general-
purpose LLMs

VibeCodeHPC
 Multi-agent system for auto-tuning HPC code using CLI-based LLM

agents (currently based on Anthropic Claude Code)
 Intended for vibe coding, but currently closer to agentic coding
 Multiple specialized agents collaborate, including Project Manager

(PM), System Engineer (SE), Programmer (PG), and Continuous
Deliverer (CD) (the configuration is customizable)

 Supports dynamic role reconfiguration and monitoring of activity,
resource, budget, etc.

 Compared to a single-agent setup, it improves code generation quality
per unit time and better detects requirement violations and other issues

 Evaluate the ability of general-purpose LLMs (OpenAI GPT-4.1 and o4-mini,
April 2025) to generate C codes of BLAS routines

 Code correctness and numerical accuracy are validated across all parameter
combinations (e.g., incx, trans, uplo, etc.)

 Working codes are generated from only the BLAS routine name, but their
structure often differs from the Fortran reference implementations

 LLMs may rely on documentations and specifications available online, not only
existing codes, leading to diverse coding styles and approaches

 Performance optimization remains a major challenge, especially for level-3
routines, which fall far short of OpenBLAS performance

D. Mukunoki, S. Hayashi, T. Hoshino, T. Katagiri, “Performance Evaluation of General Purpose Large Language Models for
Basic Linear Algebra Subprograms Code Generation”, arXiv:2507.04697, 2025.

S. Hayashi, K. Morita, D. Mukunoki, T. Hoshino, T. Katagiri, ”VibeCodeHPC: An Agent-Based Iterative Prompting Auto-Tuner
for HPC Code Generation Using LLMs”, arXiv preprint arXiv:2510.00031, September 2025.
VibeCodeHPC - Multi Agentic Vibe Coding for HPC, https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp

Acknowledgement
This research was supported by JSPS KAKENHI Grant Number JP23K11126 and JP24K02945. In
addition, this work was supported by the Joint Usage/Research Center for Interdisciplinary Large-scale
Information Infrastructures (JHPCN) and the High-Performance Computing Infrastructure (HPCI) under
project number jh250015.

Summary report

Context usage

Performance
(single vs. multi)

Multi-agent monitoring

Introduction
 The Information Technology Center at Nagoya

University is conducting the HPC-GENIE project,
which explores the use of generative AI for the
automatic generation and optimization of HPC
codes. (See separate poster for project overview.)

 This poster presents several ongoing research
activities within the HPC-GENIE project

	スライド番号 1

