9 HPC-GENIE Project: Towards Code==
NASOYA  Generative Al for HPC Programming

Takahiro Katagiri (Information Technology Center, Nagoya University,
E-mail: katagiri@cc.nagoya-u.ac.jp)

Aim of the Project

® The HPC-GENIE (High-Performance Computing with GEnerative Neural Intelligence for Execution) project is an
initiative launched by members of Information Technology Center and Graduate School of Informatics at Nagoya
University.

® |t is a research project that leverages code-generating Al for the automatic generation of HPC programs. By
integrating prompt engineering based on large language models (LLMs) with software auto-tuning (AT)
technologies, the project aims to achieve automation that dramatically enhances the productivity of HPC software &%
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Automation of Local LLM-Specialized Processing by HPC-GENIE

’ e Automation of Code Tuning Process: iterative prompting of code generation - generated code verification - performance
PR evaluation - prompt refinement
® Enhancement of code quality through multi-Al-agent (A2A) collaboration
® RAG-based reinforcement of local LLMs
® Improvement of generated code quality via supercomputer-accelerated fine-tuning and inference (multi-Al-agent execution) for

local LLMs
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Overview of VibeCodeHPC

eVibeCodeHPC: Multi-Agent System for Auto- ® A Case Study: Multi-Al agents code opination for matrix-matrix multiplication
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VibeCodeHPC: Information Technology Center, Nagoya University
Source Code: https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp htto://www.icts.nagova-u.ac.in/en/center
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