
HPC-GENIE Project: Towards Code
Generative AI for HPC Programming

Takahiro Katagiri (Information Technology Center, Nagoya University,
E-mail: katagiri@cc.nagoya-u.ac.jp)

Aim of the Project

Overview of VibeCodeHPC

Automation of Local LLM-Specialized Processing by HPC-GENIE

Automation of Code Tuning Process: iterative prompting of code generation → generated code verification → performance
evaluation → prompt refinement
Enhancement of code quality through multi-AI-agent (A2A) collaboration
RAG-based reinforcement of local LLMs
Improvement of generated code quality via supercomputer-accelerated fine-tuning and inference (multi-AI-agent execution) for

local LLMs

VibeCodeHPC: Multi-Agent System for Auto-
Tuning of HPC Code Optimization

Information Technology Center, Nagoya University
http://www.icts.nagoya-u.ac.jp/en/center/

A Case Study: Multi-AI agents code opination for matrix-matrix multiplication

The HPC-GENIE (High-Performance Computing with GEnerative Neural Intelligence for Execution) project is an
initiative launched by members of Information Technology Center and Graduate School of Informatics at Nagoya
University.
 It is a research project that leverages code-generating AI for the automatic generation of HPC programs. By

integrating prompt engineering based on large language models (LLMs) with software auto-tuning (AT)
technologies, the project aims to achieve automation that dramatically enhances the productivity of HPC software
development.

HPC-GENIE: A General Code Generative AI System Iterative Promompt for the HPC-GENIE System

Launch screen

Roles of Agents

VibeCodeHPC:
Source Code: https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
arXiv: https://www.arxiv.org/abs/2510.00031

Agents Roles Scope of Responsibility

PM Project Management Requirements Definition, Resource
Allocation, and Budget Management

SE System Design Agent Monitoring, Statistical Analysis,
and Report Generation

PG Code Generation and
Execution

Parallel Implementation, SSH/SFTP
Connection, Job Execution,

Performance Measurement, and SOTA
Evaluation

CD Deployment
Management

Publication and Anonymization of
SOTA-Achieving Code

void gemm_naive (int M, int N, int K,
double alpha, const double* A, int lda,
const double* B, int ldb,
double beta, double* C, int ldc) {

for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {

double sum = 0.0;
for (int k = 0; k < K; k++) {

sum += A[i * lda + k] * B[k * ldb + j];
}
C[i * ldc + j] = alpha * sum + beta * C[i * ldc + j];

}
}

}

Original Code
(Before Optimization) Optimizaztion History

A multi-agent system generates high-performance code faster than
a solo-agent system and additionally achieves even higher performance.

https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://www.arxiv.org/abs/2510.00031

	スライド番号 1

