9 HPC-GENIE Project: Towards Code==
NASOYA Generative Al for HPC Programming

Takahiro Katagiri (Information Technology Center, Nagoya University,
E-mail: katagiri@cc.nagoya-u.ac.jp)

Aim of the Project

® The HPC-GENIE (High-Performance Computing with GEnerative Neural Intelligence for Execution) project is an
initiative launched by members of Information Technology Center and Graduate School of Informatics at Nagoya
University.

® |t is a research project that leverages code-generating Al for the automatic generation of HPC programs. By
integrating prompt engineering based on large language models (LLMs) with software auto-tuning (AT)
technologies, the project aims to achieve automation that dramatically enhances the productivity of HPC software &%

development. H‘_-'HPC'GENIEI‘

B PROJECT oud

Automation of Local LLM-Specialized Processing by HPC-GENIE

’ e Automation of Code Tuning Process: iterative prompting of code generation - generated code verification - performance
PR evaluation - prompt refinement
® Enhancement of code quality through multi-Al-agent (A2A) collaboration
® RAG-based reinforcement of local LLMs
® Improvement of generated code quality via supercomputer-accelerated fine-tuning and inference (multi-Al-agent execution) for

local LLMs
1. Candidate Generation 2. Candidate Selection 3. Experimental Planning
Large-Scale AI HPC-GENIE General Code Generative Al | Local LLM AG AG AG
Code candidate management * Script documentation *Model Catalog/

*Code ID assignment PLEGTEEGL
* Code performance script

._ i Improvement of local LLM’ -_... .Benchmark grmemm| = | Function Map e
: | — l = Candi- specification Candi- | -Selection Strategy Pl
— | l date

Infor- selection LLM X

Code - Automation of : ‘ g information (execution time date «Code candidate Based on
Genera Prncessing+ . accuracy, etc.)
tion . .
, \ * Benchmark information)
Q mation

Code 5o
" Your Purpose SR
O a Sy P v |
6o | grm Conerat Swallow LLM LLM
\ﬁj{,‘f |\ Verifica Validat q -Script Modification
= | alidation success code
Gp E = » — Japanese Large *Repeated Prompts

Quality

Improvement
through High-
Speed Inference
(Multi-AI Agents)

Domestic /

High-Speed . Language
Fine-Tuning MultEAL Agents‘ Q;':ﬂt - Models (LLMs) 5.Benchmark/Code Verification AG 4. Code Generation AG
w deH Domain- m RAG * Compilation check - Syntax verification Generated code | *One/Multi/Many/-Shots,
National SPECiE“l:Ed _ * Execution test — Execution verification < CoT Execution L/
Strategic Data Fﬂl':dnﬂddaéllﬂn . I_ntegrat|0n EC;;L:JE;Z::CEU racy verification) “Use RAG
Platform s Performance verification instruction Verification *Select between commercial LLM [+
% Claude - AT execution P failure and local LLM
- @ — Performance tuning information * Execution history storage—
User Gemini " Execution performance » | Generated code differences
S Global LLM log accumulation LLM - Code documentation
HPC-GENIE: A General Code Generative Al System Iterative Promompt for the HPC-GENIE System

Overview of VibeCodeHPC

eVibeCodeHPC: Multi-Agent System for Auto- ® A Case Study: Multi-Al agents code opination for matrix-matrix multiplication
Tuning of HPC Code Optimization

Original Code . .
Optimizaztion History

Launch screen (Before Optimization)
) . : : Solo vs Multi-Agent Performance Comparison - EX01
void gemm_naive (int M, int N, int K, T Solo Best: 1883.4 GFLOPS X X e solo
double alpha, const double* A, int Ida, A e e e .o
const double* B, int |db, 50001 — s.lnlsu«:t::ﬂ:r?ﬁ.LJ)
Roles of Agents double beta, double* C, int Id) { I
for (inti=0;i<M; i++){ - .
e en . « AL L O
Agents Roles Scope of Responsibility for (intj=0;j <N; j++){ z
double sum = 0.0; - T
PM Proiect M Requirements Definition, Resource for (int k = 0; k < K; k++) { c
roject Management Allocation, and Budget Management sum += A[i * Ida + k] * B[k * Idb + j]; % >
} E 20001 . .. *
o - . Cli * Idc + j] = alpha * sum + beta * C[i * Idc +j]; =
: Agent Monitoring, Statistical Analysis,
SE System Design and Report Generation } } 1000
Parallel Implementation, SSH/SFTP } 0 N a X %
PG Code Generation and Connection, Job Execution, 0 1o P lative Time (rr:iﬂnutes} 50 60 70
Execution Performance Measurement, and SOTA
Evaluation A multi-agent system generates high-performance code faster than
Deployment Publication and Anonymization of ey . .
CD Management SOTA-Achieving Code a solo-agent system and additionally achieves even higher performance.
VibeCodeHPC: Information Technology Center, Nagoya University
Source Code: https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp htto://www.icts.nagova-u.ac.in/en/center
arXiv: https://www.arxiv.org/abs/2510.00031 p'//) -NAgoy -ac.) p/ / / Nﬁ&g}gﬁA

B
o 0.

https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://github.com/Katagiri-Hoshino-Lab/VibeCodeHPC-jp
https://www.arxiv.org/abs/2510.00031

	スライド番号 1

