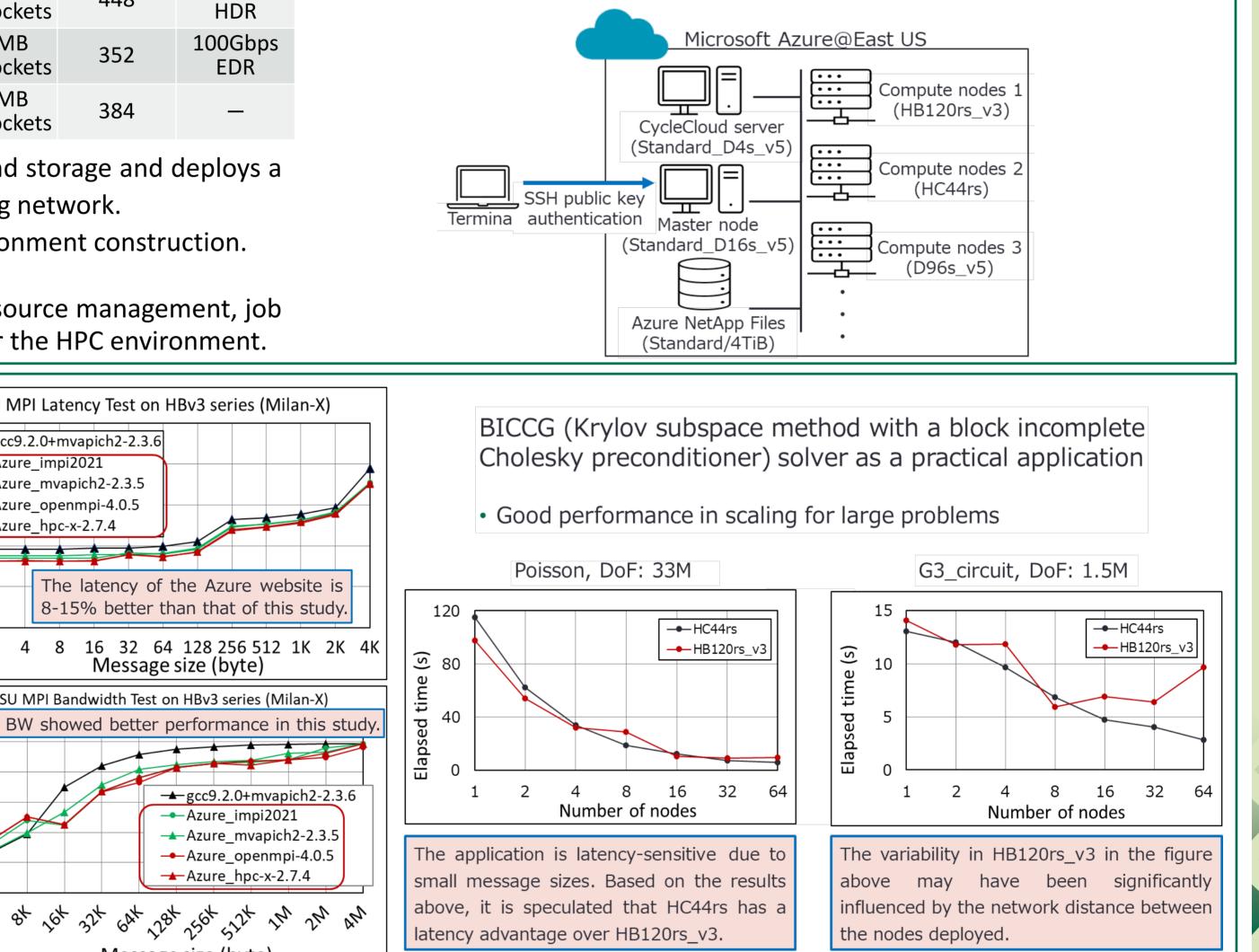


Usage environment of Azure CycleCloud and benchmark test results on virtual machines

Toru Nagai ¹⁾, Shuichi Gojuki ²⁾, Masatoshi Kawai ¹⁾, Takahiro Katagiri ¹⁾, Tetsuya Hoshino ¹⁾ 1) Information Technology Center, Nagoya Univ. 2) Microsoft Japan Co., Ltd.


Abstract We conducted a performance measurement of virtual machines targeting Microsoft Azure with the main purpose of investigating the usage environment of public clouds. Specifically, we used Azure CycleCloud, which is specialized for HPC usage environment and executed various benchmark programs on virtual machines. We will report on the usage environment of Azure CycleCloud and the benchmark test results on virtual machines and discuss the collaboration between supercomputer systems and public clouds.

Azure CycleCloud

- building HPC environment
 - > 'VM size' refers to properties or resources assigned to a virtual machine such as CPU, main memory, GPU, and network bandwidth.

VM size	CPU	# of sockets		# of HW threads		RAM (GiB)	InfiniBand
HB120- 16rs_v3	AMD EPYC 7V73X (Milan-X)	2	16	16	768MB x 2 sockets	448	200Gbps HDR
HB120rs _v3	AMD EPYC 7V73X (Milan-X)	2	120	120	768MB x 2 sockets	448	200Gbps HDR
HC44rs	Intel Xeon Platinum 8168 (Sky Lake)	2	44	44	33MB x 2 sockets	352	100Gbps EDR
D96s v	Intel Xeon Platinum	2	40	0.0	48MB	204	

- Flow of job execution •
 - 1. The user connects to the master node from a local terminal via SSH public key authentication.
 - 2. The user creates a job script on the master node and submits it to the scheduler.
 - 3. It automatically deploys VMs with the requested VM size collaborating with the scheduler.
 - 4. The job is executed.
 - 5. When the job is finished, the VMs are automatically stopped.

- Based on the VM size, it orchestrates VMs and storage and deploys a job scheduler-configured cluster to an existing network.
- It also installs specified software at the environment construction.
- managing the system

250

200

Bandwidth (GB/s)

250

200

(GB/s) (GB/s)

idth 100

50

Bandwi

11

21

31

SIMD code without restrictions

-gopt-zmm-usage=high: generate 512-bit

gcc9.2.0+cores+clos

nvc23.1+cores+close

11

icc2023.0.0+core+compact

icc2023.0.0+zmm high+core+compact

16

Benchmark test results

STREAM Triad on HB120rs v3 (Milan-X), N=10^9

icc2023.0.0+core+compact

41 51 61 71

STREAM Triad on HC44rs (Sky Lake), N=10^9

Number of threads

nvc23.1+cores+close

Max. is 235.1GB/s

gcc9.2.0+cores+spread

icc2023.0.0+core+scatter

81 91 101 111

gcc9.2.0+cores+sprea

nvc23.1+cores+spread

31

icc2023.0.0+core+scatte

icc2023.0.0+zmm high+cor

nvc23.1+cores+spread

 \geq It provides functions of user management, resource management, job management and accounting management for the HPC environment.

5

4

Latency (us)

0

30000

15000

10000

5000

at 1

(s/gW) 20000

Bandwidth

2

4

OSU MPI Latency Test on HBv3 series (Milan-X)

The latency of the Azure website is 8-15% better than that of this study.

Message size (byte)

Message size (byte)

Azure impi2021

Azure mvapich2-2.3.5

Azure_openmpi-4.0.5

Azure_hpc-x-2.7.4

OSU MPI Bandwidth Test on HBv3 series (Milan-X)

★ gcc9.2.0+mvapich2-2.3.6

Azure mvapich2-2.3.5

Azure_openmpi-4.0.5

Azure_impi2021

📥 Azure hpc-x-2.7.4

Collaboration between supercomputer centers & public clouds

- Case 1: Cloud burst, or users can utilize the system without being aware of whether their submitted jobs are being executed in an on-premises environment or in a public cloud.
- Case 2: Users actively utilize the public cloud.

21

Number of threads

26

#	Techinical requirements	Case 1	Case 2	
1	Executables and shell scripts created on premises can be used as is in the public cloud.	ОК	ОК	
2	Input files are automatically transferred to the public cloud.	OK	OK	
3	Outputs can be obtained on premise.	OK	OK	
4	Results are consistent between the two.	OK	OK	
5	Security equivalent to or higher than on premise	OK	OK	
6	Accounting information is available.	OK	OK	
7	The execution time is approximately the same or less.	NG	OK	

	Pric	cing	Converting one dollar as 145 yen					
		# of		Inter-	Fee (yen/hour)			
VM size	CPU	HW threads	NVIDIA GPU	connect between nodes	Pay as you go		Spot	
					East US	East Japan	East US	East Japan
HB120rs_v3	AMD EPYC 7V73X (Milan-X)	120	-	200Gbps HDR	522.0	756.9	52.2	75.7
HC44rs	Intel Xeon Platinum 8168 (Sky Lake)	44	-	100Gbps EDR	459.4	666.1	45.9	66.6
NC96ads_A100 _v4	AMD EPYC 7V12 (Milan)	96	A100 x 4	-	2130.3	3088.9	672.3	1202.8
NC24s_v3	Intel Xeon E5-2690 v4 (Broadwell)	24	V100 x 4	-	1774.8	2432.5	826.7	852.6
096s_v5	Intel Xeon Platinum 8370C (Ice Lake)	96	-	-	668.2	863.0	109.6	87.2
Flow Type I	Fujitsu A64fx	48	-	Tofu D	31.0			
Flow Type II	Intel Xeon Gold 6230 (Cascade Lake)	40	V100 x 4	200Gbps EDR	38.8			
Flow Cloud	Intel Xeon Gold 6230 (Cascade Lake)	80	_	100Gbps EDR	44.3			

- #1-3: It is OK, only if the aligned software execution environments on both the onpremise and public cloud, and each other's file systems mutually mounted over the network are available.
- #7: Optimization is necessary.
- The user manual is essential.

• While the usability is not good, it seems possible to use the spot (excluding GPU usage).

• There is also room to consider a plan that allows us to use VMs cheaper than pay-asyou-go by committing to use for a certain period and contracting.

Information Technology Center, Nagoya University http://www.icts.nagoya-u.ac.jp/en/center/

