
Optimizations of ℋ-matrix-vector Multiplication
for Modern Multi-core Processors

Tetsuya Hoshino (Information Technology Center, Nagoya univ., E-mail: hoshino@cc.nagoya-u.ac.jp)

Information Technology Center, Nagoya University
http://www.icts.nagoya-u.ac.jp/en/center/

Hierarchical matrices (ℋ-matrices)
• Approximation method for dense matrices such as the coefficient matrix

of the boundary element method (BEM)
• Expressed by a set of low-rank approximated and small dense sub-

matrices
• Reduce memory O(N2) -> O(N log N)
• ℋ-matrix-vector multiplication (HiMV) is important kernel

ℋ-matrix

Low-rank sub-matrix

Dense sub-matrix

Optimizations of HiMV
• To optimize the HiMV kernel for modern multi-core CPUs, the

following optimizations were applied

WO (A64FX)

ES4 (Rome Single Socket)

OBCX (CLX Single Socket) DGEMV

DGEMV
(4 numa)

DGEMV
(4 numa)

H1x8-8 H3x3-4 H3x3-6 H3x3-8 Sp-8s Sp-8 Di-8s Di-8 S16-8
Shape Humanoid 1x8 Humanoid 3x3 Single Sphere Dipole Spheres 16
ℋ-matrix Accuracy 10-8 10-4 10-6 10-8 10-8 10-8 10-8

unknowns 157,312 176,976 20,000 200,000 21,600 160,000 216,000
low rank sub-mats 129,678 139,588 16,640 182,176 17,002 149,426 195,178

dense sub-mats 243,328 288,876 29,480 242,976 33,096 248,864 322,800
(MAX, AVE) rank (70,21) (22,8) (44,14) (75,22) (34,16) (35,14) (53,17) (52,16) (53,16)
Memory [GB] 4.243 3.293 6.045 9.695 0.460 6.791 0.453 5.148 6.491
Memory vs. dense [%] 2.143 1.314 2.412 3.869 14.38 2.122 12.14 2.514 1.739

For more information, please refer to the following paper: T. Hoshino, A.
Ida and T. Hanawa, "Optimizations of H-matrix-vector Multiplication for
Modern Multi-core Processors," (CLUSTER 2022)

1. firsttouch: First touch
2. contiguous: Contiguous memory placement by

changing from a tree structure to a one-
dimensional array

3. avoidAtomic: A reduce algorithm that avoids
atomic operations

4. balancing: Inter-thread load balancing
5. padding: Zero padding for aligned memory access
6. blocking: ℋ-matrix Storage for cache blocking
7. sort: Submatrix sorting for efficient cache usage

 For example, earthquake simulations require >10,000 HiMV executions
𝒙𝒙𝒚𝒚𝟏𝟏𝒚𝒚

atomic
add *=

𝒚𝒚𝟐𝟐

𝒚𝒚𝟑𝟑
𝒚𝒚𝟒𝟒

𝒚𝒚𝟓𝟓

𝑻𝑻𝟏𝟏𝑻𝑻𝟐𝟐

𝑻𝑻𝟑𝟑

𝑻𝑻𝟒𝟒 𝑻𝑻𝟓𝟓

𝑨𝑨

𝒚𝒚′𝒚𝒚

𝑻𝑻𝟏𝟏

𝑻𝑻𝟐𝟐

𝑻𝑻𝟑𝟑

𝑻𝑻𝟒𝟒
𝑻𝑻𝟓𝟓

reduce

0 padding

(Shared 1-D array)

64 byte aligned
(cache line size)

𝑻𝑻𝟏𝟏
𝑻𝑻𝟐𝟐

𝑻𝑻𝟑𝟑 𝑻𝑻𝟒𝟒

𝑻𝑻𝟓𝟓

𝒙𝒙

*=

𝑨𝑨

Original HiMV

HiMV applied avoidAtomic and balancing

Load imbalance

Experimental results
• Evaluated on modern multi-core processor

 A64FX with HBM2, AMD EPYC Rome, Intel
Xeon CascadeLake

• Evaluated by valuable types of ℋ-matrices
appearing in electrostatic field analysis
 H1x8: Humanoid objects lined up in one

dimension
 H3x3: Humanoid objects aligned in two

dimension
 Sp: Single spherical object (a three-

dimensional example)
 Di: Two spherical object, such as the Earth

and Moon
 S16: A tetrahedron with 16 objects (four

near each vertex)

Input ℋ-
matrices

Evaluation results on single socket A64FX, Rome, and CascadeLake

Summary
• By applying the series of optimizations,

we obtained the following performance
 A64FX: 57.9 ~ 84.8% of dgemv
 EPYC Rome: 93.2 ~ 100.7% of dgemv
 CascadeLake: 97.6 ~ 98.7% of dgemv

• We found that for A64FX with HBM2,
optimization to increase the efficiency of
cache utilization is important

	スライド番号 1

